Answer:
30 m/s
Explanation:
Vf = ?
Vi = 0 m/s
a = 20 m/s^2
t = 1.5 s
Plug those values into the equation: Vf = Vi + at
Vf = 0 + (20)(1.5)
Vf = 30 m/s
Answer:
when the ball is at rest in his coach's hands.
Explanation:
The forces on the basketball are balanced when the basketball is not experiencing any acceleration. This happens when the ball is in his coach's hand: in fact, at that moment the ball is at rest, so it means that its acceleration is zero. According to Newton's second law, this also mean that the net force on the basketball is zero, so the forces on the ball are balanced:

where F is the net force, m is the mass of the ball and a is the acceleration.
This will take me a little bit let me research :)
Answer:
Speed of the wave is 7.87 m/s.
Explanation:
It is given that, tapping the surface of a pan
of water generates 17.5 waves per second
We know that the number of waves per
second is called the frequency of a wave.
So, f= 17.5 HZ
Wavelength of each wave,
A = 45 cm = 0.45 m
Speed of the wave is given by:
175 × 0.45
V= 7.87 m/s
So, the speed of the wave is 7.87 m/s
Hence, this is the required solution.
Answer:
20 J
Explanation:
Kinetic energy is given as half of the product of mass and the square of velocity of an object:
KE = 
where m = mass = 40 kg
v = velocity = 1 m/s
Hence, Mary's kinetic energy is:
KE = 
KE = 20 * 1 = 20 J
She has a kinetic energy of 20 J.