The distance between
your
initial position and your
final position is displacement. Often denoted by

or Δ
To solve the problem you must first know that by keeping the linear moment P1 = P2. You must find P1 from the system and equal it to P2 of the system, from that equation you clear the final velocity 1. Which will result in V1f = 60.16 cm / s to the north.I attach the solution.
Answer: Option A; 9.8 m/s^2
Explanation:
When an object is in the air, and there is no air resistance acting on the object, the only force that will act on the object is the gravitational force (on the vertical axis).
Then, if the only force acting on the object is the gravitational force, the acceleration of the object will be equal to the gravitational acceleration.
We know that the gravitational acceleration is equal to:
g = 9.8m/s^2
Then the acceleration on the vertical axis will be equal to:
a(t) = 9.8m/s^2
The correct option is the first one:
A. 9.8 m/s^2
Since we have , v=f×lambda (wavelength). Where v equals 350m/s and wavelength equals 3.80. so it will become f = v/lambda=350/3.80=92.1052Hz
From the freezing temperature up to about 4°C (39°F) the water CONTRACTS. That is, it becomes MORE dense. I think I read that water is the ONLY known substance whose solid phase floats in its liquid phase. That's why the cubes float in your soda and bergs float in the ocean. And if weren't so, then life on Earth would not be possible ! Oceans and lakes would freeze from the bottom up, ONE TIME, and then never thaw again.