Answer:
The decay constant is 1.21×10^-4/year
Explanation:
Decay constant = 0.693/half-life
Half-life = 5730 years
Decay constant = 0.693/5730 years = 1.21×10^-4/year
Answer:
the longest time needed to read an arbitrary sector located anywhere on the disk is 2971.24 ms
Explanation:
Given the data in the question;
first we determine the rotational latency
Rotational latency = 60/(3600×2) = 0.008333 s = 8.33 ms
To get the longest time, lets assume the sector will be found at the last track.
hence we will access all the track, meaning that 127 transitions will be done;
so the track changing time = 127 × 15 = 1905 ms
also, we will look for the sectors, for every track rotations that will be done;
128 × 8.33 = 1066.24 ms
∴The Total Time = 1066.24 ms + 1905 ms
Total Time = 2971.24 ms
Therefore, the longest time needed to read an arbitrary sector located anywhere on the disk is 2971.24 ms
I think it is kinetic friction not the best at physics
Answer:
A) attached file
B) attached file
C) attached file
D) Kirchhoff’s junction rule states that at any junction, the sum of the altimeter attained moving into and out of that junction are equal.
While
Kirchhoff’s loop rule states that the algebraic sum of the number of lifts used in any closed loop is equal to zero
Explanation:
Given that the lifts are analogous to batteries, and the runs are analogous to resistors.
So from all the figures. The resistors represent the runs while the lift represents the battery.
Kirchhoff’s junction rule states that at any junction, the sum of the altimeter attained moving into and out of that junction are equal.
While
Kirchhoff’s loop rule states that the algebraic sum of the number of lifts used in any closed loop is equal to zero
Please find the attached file for the sketch