HI is strong acid, so:
[H+] = [HI]
[H+] = 6 × 10^-3 M
pH = -log[H+]
pH = -log(6 × 10^-3) = 2,22
:-) ;-)
Answer:
K, the rate constant = 9.73 × 10^(-1)/s
Explanation:
r = K × [A]^x × [B]^y
r = Rate = 1.07 × 10^(-1)/s
K = Rate constant
A and B = Concentration in mol/dm^-3
A = 0.44M
B = 0.11M
x = Order of reaction with respect to A = 0
y = Order of reaction with respect to B = 1
Solving, we get
r/([A]^x × [B]^y) = K
K = 1.07 × 10^(-1)/s/(0.44^0 × 0.11^1)= 0.9727
K = 0.9727
If I'm correct, the crater is actually a circular-shaped area around the volcano's central vent. My answer is false
<u>Answer:</u> The final volume will be 14.85 L.
<u>Explanation:</u>
To calculate the final volume when temperature increases, we use Charles' Law.
This law states that volume is directly proportional to the temperature of the gas if number of moles and pressure remains constant.

where,
= Initial volume and temperature
= Final volume and temperature
We are given:

Putting values in above equation, we get:


Hence, the final volume of the gas is 14.85L
Explanation: <em>The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. It is only at this point that researchers begin to develop a testable hypothesis.</em>
(Unless you are creating an exploratory study, your hypothesis should always explain what you expect to happen)