The first car travels at 60km/h and skid at 30m away from the starting point while another car is also traveling at 180km/h. Now, we need to solve for the skidding distance.
We assigned variables such as:
V1=60km/h
V2=180km/h
Skid1=30m
Skid2=?
We solve this by ratio and proportion method such as shown below:
V1/V2=skid1/skid2
60/180=30/skid2
skid2=(30*180)/60
skid2=90meters
Th answer is 90 meters.
Okay. I'm willing to do that. But first you'll have to tell me something about the sample in question 3.
Explanation:
The object is moving along the parabola y = x² and is at the point (√2, 2). Because the object is changing directions, it has a centripetal acceleration towards the center of the circle of curvature.
First, we need to find the radius of curvature. This is given by the equation:
R = [1 + (y')²]^(³/₂) / |y"|
y' = 2x and y" = 2:
R = [1 + (2x)²]^(³/₂) / |2|
R = (1 + 4x²)^(³/₂) / 2
At x = √2:
R = (1 + 4(√2)²)^(³/₂) / 2
R = (9)^(³/₂) / 2
R = 27 / 2
R = 13.5
So the centripetal force is:
F = m v² / r
F = m (5)² / 13.5
F = 1.85 m
Answer:
the vibrations push the purse up and down very fast and gravity pushes the purse down onto the floor
Explanation: does that help