Answer:

Explanation:
The Hi line of the Balmer series is emitted in the transition from n = 3 to n = 2 i.e.
and 
The wavelength of Hi line of the Balmer series is given by :




So, the wavelength for this line is 550 nm. Hence, this is the required solution.
The amount of power required to move the 120 Kg person to a distance of 35 m in 150 s is 274.4 W
<h3>How to determin the power</h3>
Power is simply defined as the rate at which work is done. It can be expressed mathematically as
Power (P) = work (W) / time (t)
But
Work = force (F) × distance (d)
Therefore,
P = Fd / t
With the above formula, we can obtain the power as follow:
- Mass (m) = 120 Kg
- Distance (d) = 35 m
- Time (t) = 150 s
- Acceleration due to gravity (g) = 9.8 m/s²
- Force (F) = mg = 120 × 9.8 = 1176 N
- Power (P) = ?
P = Fd / t
P = (1176 × 35) / 150
P = 41160 / 150
P = 274.4 W
Thus, the power is 274.4 W
Learn more about power:
brainly.com/question/20353916
#SPJ1
The have the knowledge of a monkey, they survive like monkey, they become one with monkey okay seriously tho they probably have survival knowledge
Free energy is a thermodynamic potential that can be used to calculate the maximum reversible work that can be performed by a thermodynamic system at a constant temperature and pressure. It is fulfilled that if the energy change is less than zero it will mean that the relationship will proceed towards the product, while if the relationship is greater than zero the reaction will proceed towards the reactant. Therefore the correct option is D.
<em>The free energy change of a reaction can determine the reaction direction</em>