Answer:

Explanation:
Let consider the observer as an inertial reference frame. The object is modelled after the Principle of Momentum Conservation:

The speed of the more massive piece is:

The kinetic energy added to the system is:
![\Delta K = \frac{1}{2}\cdot [(5.333\,kg)\cdot (0\,\frac{m}{s} )^{2}+(26.665\,kg )\cdot (31.202\,\frac{m}{s} )^{2}]-\frac{1}{2}\cdot (32\,kg)\cdot (26\,\frac{m}{s} )^{2}](https://tex.z-dn.net/?f=%5CDelta%20K%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5B%285.333%5C%2Ckg%29%5Ccdot%20%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%2B%2826.665%5C%2Ckg%20%29%5Ccdot%20%2831.202%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%5D-%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%2832%5C%2Ckg%29%5Ccdot%20%2826%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D)

It <span>Ions were once atoms with the same number of electrons and protons. Since they have opposite charges atoms are neutral. When they become ions the lose or gain electrons and become unbalanced. ... These different charges are attracted to each other via electric forces.</span>
In the first direct detection of gravitational waves by LIGO in 2015, the waves came from the merger of two black holes. Option B is correct. This is further explained below.
<h3>What are gravitational waves?</h3>
A gravitational wave is simply defined as a ripple in space that is unseen though extremely rapid. Gravitational waves move at light speed. As they pass past, these waves compress and stretch everything in their path.
In conclusion, the merger of two black holes is the first direct detection of gravitational waves.
Read more about Wave
brainly.com/question/23271222
#SPJ1
In this question a lot of information's are provided. Among the information's provided one information and that is the time of 4 seconds is not required for calculating the answer. Only the other information's are required.
Mass of the block that is sliding = 5.00 kg
Distance for which the block slides = 10 meters/second
Then we already know that
Momentum = Mass * Distance travelled
= (5 * 10) Kg m/s
= 50 kg m/s
So the magnitude of the blocks momentum is 50 kg m/s. The correct option among all the given options is option "b".
Answer:
Potential difference = 6.0 V
I for 1.0Ω = 6 A
I for 2.0Ω = 3 A
I for 3.0Ω = 2 A
Explanation:
Potential difference (ΔV) = Current (I) x Resistance (R)
The potential difference is constant and equals 6.0 V, hence;
I = ΔV/R
When R = 1.0, I =6/1 = 6 amperes
When R = 2.0, I = 6/2 = 3 amperes
When R = 3.0, I = 6/3 = 2 amperes
<em>The potential difference is 6.0 V and the current is 6, 3, and 2 amperes for a resistance of 1.0, 2.0 and 3.0Ω respectively.</em>