1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LUCKY_DIMON [66]
3 years ago
12

Can you use isentropic efficiency for a non-adiabatic compressor?

Engineering
1 answer:
vodomira [7]3 years ago
4 0
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
You might be interested in
Define and discuss the difference between micronutrients and macronutrients. Also, discuss their importance in the body at rest
almond37 [142]

Answer:

Macronutrients are simply nutrients the body needs in a very high amount e.g Carbohydrate.

MicroNutrients are simply nutrients the body needs but in little amount e.g  Minerals.

Explanation:

So for further breakdown:

What are nutrients? Nutrients are essential elements that nourish the body in different capacities. We as humans get most of out nutrients from the food and water we ingest.

Now about Macro Nutrients: From the prefix "Macro" which means large, we can infer that macro nutrients are elements need by the body for the fundamental processes of the body, deficiency in this nutrients are very easy to spot. Examples are: Carbohydrates, Protein, Fats amd Water.

Micro Nutrients: In relation to macro nutrients this are elements that the body needs but are not needed in Large quantities. They mostly work like supporting nutrients. Most chemical activities like reaction that occur in the body are a function of micro nutrients. Defiencies in micrp nutrients may take some time to spot e.g Minerals and Vitamins

In regards to exercise: Macro nutrients are the essential ones here since they are the ones that generate energy. PS: micro nutrients dont generate energy.

In regards to rest: Both the Macro and Micro Nutrients are essentail for the overall well being of the body.

5 0
3 years ago
On a piece of paper, sketch the x-y stress state and the properly oriented principal stress state. Use the resulting sketch to a
stealth61 [152]

Answer:

See explaination

Explanation:

Please kindly check attachment for the step by step and very detailed solution of the given problem

6 0
4 years ago
Explain why the following scenario fails to meet the criteria for proper reverse engineering.
avanturin [10]

Answer:

he must document or remember the order he took it apart so he put it back together

Explanation:

5 0
2 years ago
A rectangular block of material with shear modulus G= 620 MPa is fixed to rigid plates at its top and bottom surfaces. Thelower
PIT_PIT [208]

Answer:

γ_{xy} =0.01, P=248 kN

Explanation:

Given Data:

displacement = 2mm ;

height = 200mm ;

l = 400mm ;

w = 100 ;

G = 620 MPa = 620 N//mm²;    1MPa = 1N//mm²

a. Average Shear Strain:

The average shear strain can be determined by dividing the total displacement of plate by height

γ_{xy} = displacement / total height

     = 2/200 = 0.01

b. Force P on upper plate:

Now, as we know that force per unit area equals to stress

τ = P/A

Also,  τ = Gγ_{xy}

By comapring both equations, we get

P/A = Gγ_{xy}   ------------ eq(1)

First we need to calculate total area,

A = l*w = 400 * 100= 4*10^4mm²

By putting the values in equation 1, we get

P/40000 = 620 * 0.01

P = 248000 N or 2.48 *10^5 N or 248 kN

6 0
3 years ago
Write a program that uses a function called Output_Array_Info. Output_Array_Info Properties: Input Parameters: 1. A pointer to a
Artyom0805 [142]

Answer:

C++ code explained below

Explanation:

Please note the below program has been tested on ubuntu 16.04 system and compiled using g++ compiler. This code will also work on other IDE's

-----------------------------------------------------------------------------------------------------------------------------------

Program:

-----------------------------------------------------------------------------------------------------------------------------------

//header files

#include<iostream>

//namespace

using namespace std;

//function defintion

void Output_Array_Info(int *array_ptr, int size)

{

//display all array elements

cout<<"Array elements are: "<<endl;

for(int i =0; i<size; i++)

{

cout<<*(array_ptr+i)<<endl;

}

//display address of each element

cout<<endl<<"memory address of each array elemnt is: "<<endl;

for(int i =0; i<size; i++)

{

cout<<array_ptr+i<<endl;

}

}

//start of main function

int main()

{

//pointer variables

int *pointer;

//an array

int numbers[] = { 5, 7, 9, 10, 12};

//pointer pointing to array

pointer = numbers;

//calculate the size of the array

int size = sizeof(numbers)/sizeof(int);

//call to function

Output_Array_Info(numbers, size);

return 0;

}

//end of the main program

8 0
3 years ago
Other questions:
  • At a high school science fair, Connor won first place for his replica of the Golden Gate Bridge. Connor liked the project so muc
    5·1 answer
  • An ideal gas undergoes two processes: one frictionless and the other not. In both the cases, the gas is initially at 200 ℉ and 1
    7·2 answers
  • Two AAA-size lithium batteries are connected in series in a flashlight. Each battery has 3.5 volt and 4- Amp-hour capacity. If t
    8·1 answer
  • Exhaust gases entering a convergent nozzle have a total pressure (Pt) of 200 kPa and total temperature (Tt) of 800 K. The gases
    5·2 answers
  • 10. True or False: You should select your mechanic before you experience vehicle failure.
    6·2 answers
  • How can goal setting help with academic performance?
    13·1 answer
  • Robots make computations and calculations using what part
    12·1 answer
  • Which is a better hydraulic cross section for an open channel: one with a small or a large hydraulic radius?
    13·1 answer
  • What is 39483048^349374*3948048/3i4u4
    15·1 answer
  • Dndbgddbdbhfdhdhdhhfhffhfhhddhhdhdhdhdhd​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!