1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LUCKY_DIMON [66]
3 years ago
12

Can you use isentropic efficiency for a non-adiabatic compressor?

Engineering
1 answer:
vodomira [7]3 years ago
4 0
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
You might be interested in
Question in image. Question from OSHA.
marin [14]

Answer:

2

Explanation:

my sister did this and its the answer

3 0
3 years ago
Read 2 more answers
Read the passage.
Archy [21]

The claim being made in in the above passage is that " It makes financial sense to stop using the penny." (Option B)

<h3>What textual evidence backs up the above claim?</h3>

The textual evidence that supports the above claim is "Not only does it make financial sense to take the penny out of circulation, but it also makes environmental sense." [Para. 2]

Textual evidence is evidence related to a text which supports claims made in such a text.

Learn more about claims at:
brainly.com/question/2748145
#SPJ1

6 0
2 years ago
Although studs are sometimes spaced 24" O.C. in residential structures, a spacing of_____ O.C. is more commonly used.
Allisa [31]

Answer:

B. 16

Explanation:

hope this helps

 - Leila

4 0
2 years ago
For a flow rate of 212 cfs find the critical depth in (a) a rectangular channel with ????=6.5 ft, (b) a triangular channel with
Fofino [41]

Answer:

A. 3.21ft

B. 3.51ft

C. 2.95ft

D. 1.5275ft

Explanation:

A) Q =212 cu.f/s

Formula for critical depth of rectangular section is: dc =[(Q^2) /(b^2(g))]^1/3

Where dc =critical depth, ft

Q= quantity of flow or discharge, ft3/s

B= width of channel, ft (m)

g = acceleration due to gravity which is 9.81m/s2 or 32.185ft/s2

Now, from the question,

Q = 212 cu.f/s and b=6.5ft

Therefore, the critical depth is: [(212^2)/(6.5^2 x32. 185)]^(1/3)

To give ; critical depth= (44,944/1359.82)^(1/3) = 3.21ft

B. Formula for critical depth of a triangular section; dc = (2Q^2/gm^2)^(1/5)

From the question, Q =212 cu.f/s and m=1.6ft while g= 32.185ft/s2

Therefore, critical depth = [(212^2) /(1.6^2 x32. 185)] ^(1/5) = (44,944/84.466)^(1/5) = 3.51ft

C. For trapezoidal channel, critical depth(y) is derived from (Q^2 /g) = (A^3/T)

Where A= (B + my)y and T=(B+2my)

Now from the question, B=6.5ft and m=5ft.

Therefore, A= (6.5 + 2y)y and T=(6. 5 + 2(5y))= 6.5 + 10y

Now, let's plug the value of A and T into the initial equation to derive the critical depth ;

(212^2 /32.185) = [((6.5 + 2y)^3)y^3]/ (6.5 + 10y)

Which gives;

1396.43 = [((6.5 + 2y)^3)y^3]/ (6.5 + 10y)

Multiply both sides by 6.5 + 10y to get;

1396.43(6.5 + 10y) = [((6.5 + 2y)^3)y^3]

Factorizing this, we get y = 2. 95ft

D) Formula for critical depth of a circular section; dc =D/2[1 - cos(Ѳ/2)]

Where D is diameter of pipe and Ѳ is angle at critical depth in radians.

Angle not given, so we assume it's perpendicular angle is 90.

Since angle is in radians, therefore Ѳ/2 = 90/2 = 45 radians ; converting to degree, = 2578. 31

Therefore, dc = (6.5/2) (1 - cos (2578.31))

dc = 3.25(1 - 0.53) = 3.25 x 0.47 = 1.5275ft

8 0
3 years ago
How to find the voltage(B Aab) in series parallel circuit? ​
Sindrei [870]

Answer:

  Vab ≈ 3.426 V

Explanation:

First of all, it is convenient to find the equivalent parallel resistance of R5 and R6. That will be ...

  R56 = (R5)(R6)/(R5 +R6) = (1000)(1500)/(1000 +1500) = 600

Then we can call V1 the voltage at the top of R2. The voltage at Va is a divider from V1:

  Va = V1·(R4/(R3+R4)) = V1(560/1030) ≈ 0.543689V1

The voltage at Vb is also a divider from V1:

  Vb = V1·(R7+R8)/(R2 +R56 +R7 +R8) = V1(780/1710) ≈ 0.456140V1

The parallel branches containing Va and Vb have an effective resistance of ...

  (1030)(1710)/(1030+1710) = 642.81

That forms a divider with R1 to give V1:

  V1 = (100 V)642.81/(1000 +642.81) ≈ 39.1287 V

The difference Va-Vb is ...

  Vab = (39.1287 V)(0.543689 -0.456140) ≈ 3.426 V

_____

We have done this using parallel resistance and voltage divider calculations. You can also do it using node voltage equations. Using the same definition for V1 as above, we have ...

  (Vs -V1)/R1 +(Vb -V1)/(R56+R2) +(Va-V1)/R3 = 0

  (V1 -Vb)/(R56 +R2) -Vb/(R7+R8) = 0

  (V1 -Va)/R3 -Va/R4 = 0

The solution of interest is the value of Vab, shown in the attachment. It computes as 154200/45013 V ≈ 3.42568 V.

4 0
3 years ago
Other questions:
  • Where are revolved sections placed in a print? A) in between break lines B) cutting planes are used to identify their locations
    12·1 answer
  • True or false? Don't break or crush mercury-containing lamps because mercury powder may be released.
    8·1 answer
  • A tank contains 350 liters of fluid in which 50 grams of salt is dissolved. Pure water is then pumped into the tank at a rate of
    8·1 answer
  • The hot water needs of an office are met by heating tab water by a heat pump from 16 C to 50 C at an average rate of 0.2 kg/min.
    5·1 answer
  • The collar A, having a mass of 0.75 kg is attached to a spring having a stiffness of k = 200 N/m . When rod BC rotates about the
    15·1 answer
  • Two piezometers have been placed along the direction of flow in a confined aquifer that is 30.0 m thick. The piezometers are 280
    6·1 answer
  • Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric flow rate of 21 m3/min and exits at 12 b
    11·1 answer
  • Suppose to build RSA crypto system you picked primes "p" and "q" as 3 and 7 and "e" as 5 what are the public and private keys? W
    11·1 answer
  • What is the difference between the elements of design and the principles of design? Define at
    7·1 answer
  • 3. If nothing can ever be at absolute zero, why does the concept exist?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!