1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LUCKY_DIMON [66]
3 years ago
12

Can you use isentropic efficiency for a non-adiabatic compressor?

Engineering
1 answer:
vodomira [7]3 years ago
4 0
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
You might be interested in
A rigid bar ABCD is pinned at A and supported by two steel rods connected at B and C, as shown. There is no strain in the vertic
mylen [45]

Answer:

See attached picture.

Explanation:

4 0
3 years ago
The clepsydra, or water clock, was a device that the ancient Egyptians, Greeks, Romans, and Chinese used to measure the passage
Nookie1986 [14]

Suppose a tank is made of glass and has the shape of a right-circular cylinder of radius 1 ft. Assume that h(0) = 2 ft corresponds to water filled to the top of the tank, a hole in the bottom is circular with radius in., g = 32 ft/s2, and c = 0.6. Use the differential equation in Problem 12 to find the height h(t) of the water.

Answer:

Height of the water = √(128)/147456 ft

Explanation:

Given

Radius, r = 1 ft

Height, h = 2 ft

Radius of hole = 1/32in

Acceleration of gravity, g = 32ft/s²

c = 0.6

Area of the hold = πr²

A = π(1/32)² ---- Convert to feet

A = π(1/32 * 1/12)²

A = π/147456 ft²

Area of water = πr²

A = π 1²

A = π

The differential equation is;

dh/dt = -A1/A2 √2gh where A1 = Area of the hole and A2 = Area of water

A1 = π/147456, A2 = π

dh/dt = (π/147456)/π √(2*32*2)

dh/dt = 1/147456 * √128

dh/dt = √128/147456 ft

Height of the water = √(128)/147456 ft

3 0
4 years ago
I don't understand this I am really bad at measurements
Scorpion4ik [409]

Answer:

its about 2 and a half

Explanation:

3 0
4 years ago
Read 2 more answers
A 0.4-W cylindrical electronic component with diameter 0.3 cm and length 1.8 cm and mounted on a circuit board is cooled by air
Katyanochek1 [597]

Answer:

The surface temperature of the component 54.6 degrees celsius.

Explanation:

Please see attachment.

7 0
3 years ago
Answer the question faster please
Juliette [100K]

Answer:

No

Explanation:

3 0
3 years ago
Other questions:
  • Select the correct answer.
    13·1 answer
  • Can you identify the major theme illustrated by each of the following examples? If necessary, you may review the themes in Chapt
    10·1 answer
  • An engine operates on gasoline (LHV=44 MJ/kg) with a brake thermal efficiency of 37.9 % What is the brake specific fuel consumpt
    14·1 answer
  • Ray L. Zapp is thinking about testing strategies for his new HashTable class, which uses Rainforest's cloud storage service to m
    9·1 answer
  • A small submarine has a triangular stabilizing fin on its stern. The fin is 1 ft tall and 2 ft long. The water temperature where
    9·1 answer
  • (1) Estimate the specific volume in cm3 /g for carbon dioxide at 310 K and (a) 8 bar (b) 75 bar by the virial equation and compa
    10·1 answer
  • A driver counts 21 other vehicles using 3 EB lanes on one section of I-80 between her rented car and an overpass ahead. It turne
    14·1 answer
  • Advatnage and disadvantages of gas turbine engine ?
    14·1 answer
  • Which of the following is a correct version of a user story?
    8·1 answer
  • This graph shows the US unemployment rate from<br> August 2010 to November 2011
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!