1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LUCKY_DIMON [66]
3 years ago
12

Can you use isentropic efficiency for a non-adiabatic compressor?

Engineering
1 answer:
vodomira [7]3 years ago
4 0
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
You might be interested in
When groups of molecules within liquid and gases move, it is called
steposvetlana [31]

Answer:

convenction is your answer

7 0
3 years ago
Interpret the Blame responsibility and causation in your own words in the light of Columbia Accident.
Licemer1 [7]

Answer:

Proposed Improvements and Generic Lessons

Within 2 h of losing the signal from the returning spacecraft, NASA’s Administrator established the Columbia Accident Investigation Board (CAIB) to uncover the conditions that had produced the disaster and to draw inferences that would help the US space program to emerge stronger than before (CAIB, 2003). Seven months later, the CAIB released a detailed report that included its recommendations (Starbuck and Farjoun, 2005).

The CAIB (2003) report attempted to seek answers to the following four crucial questions:

1.

Why did NASA continue to launch spacecraft despite many years of known foam debris problems?

2.

Why did NASA managers conclude, despite the concerns of their engineers, that the foam debris strike was not a threat to the safety of the mission?

3.

How could NASA have forgotten the lessons of Challenger?

4.

What should NASA do to minimize the likelihood of such accidents in the future?

Although the CAIB’s comprehensive report raised important questions and offered answers to some of them, it also left many major questions unanswered (Starbuck and Farjoun, 2005).

1.

Why did NASA consistently ignore the recommendations of several review committees that called for changes in safety organization and practices?

2.

Did managerial actions and reorganization efforts that took place after the Challenger disaster contribute, both directly and indirectly, to the Columbia disaster?

3.

Why did NASA’s leadership fail to secure more stable funding and to shield NASA’s operations from external pressures?

By examining, with respect to the Columbia disaster, the case of NASA as an organization, one can try to extract generalizations that could be useful for other organizations, especially those engaged in high-risk activities—such as nuclear power plants, oil and gas, hospitals, airlines, armies, and pharmaceutical companies—and such generic principles may also be salutary for any kind of organization.

The CAIB (2003) report recommended developing a plan to inspect the condition of all RCC systems, the investigation having found the existing inspection techniques to be inadequate. RCC panels are installed on parts of the shuttle, including the wing leading edges and nose cap, to protect against the excessive temperatures of reentry. They also recommended that taking images of each shuttle while in orbit should be standard procedure as well as upgrading the imaging system to provide three angles of view of the shuttle, from liftoff to at least SRB separation. “The existing camera sites suffer from a variety of readiness, obsolescence, and urban encroachment problems.” The board offered this suggestion because NASA had had no images of the Columbia shuttle clear enough to determine the extent of the damage to the wing. They also recommended conducting inspections of the TPS, including tiles and RCC panels, and developing action plans for repairing the system. The report included 29 recommendations, 15 of which the board specified must be completed before the shuttle returned to flight status, and also made 27 “observations” (CAIB, 2005).

7 0
3 years ago
What is the present value of the future receipts of $2,000, 5 years from now at 10% compounded annually?
Elden [556K]

Answer:

P = $ 766.28

Explanation:

present value = ?

Future value = $ 2000

time = 5 years

compounded annually at the rate of = 10 %

A = P + P(1+\dfrac{r}{100})^t

2000 = P + P(1+\dfrac{10}{100})^5

2000 = P + 1.61 P

2.61 P = 2000

P = $ 766.28

hence, the present value of amount invested to get the future value of $2000 is equal to P = $ 766.28

3 0
3 years ago
When developing a design proposal, you will need to ask: *
Liula [17]

Answer:

<u>L</u><u>a</u><u>s</u><u>t</u><u> </u><u>o</u><u>p</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>:</u><u> </u><u>A</u><u>l</u><u>l</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>a</u><u>b</u><u>o</u><u>v</u><u>e</u><u>.</u>

<em>P</em><em>l</em><em>e</em><em>a</em><em>s</em><em>e</em><em> </em><em>M</em><em>a</em><em>r</em><em>k</em><em>☆</em>

<em>A</em><em>r</em><em>i</em><em>a</em><em>♡</em>

6 0
3 years ago
Which technical practice incorporates build-time identification of security vulnerabilities in the code?
jonny [76]

Answer:

Penetration testing

<h3>What is Penetrating Testing?</h3>
  • A penetration test, colloquially known as a pen test or ethical hacking, is an authorized simulated cyberattack on a computer system, performed to evaluate the security of the system; this is not to be confused with a vulnerability assessment.

To learn more about it, refer

to brainly.com/question/22654163

#SPJ4

3 0
2 years ago
Other questions:
  • How much to build a barber clipper?
    10·1 answer
  • PLZ HURRY IM ON A TIMER
    6·1 answer
  • Pam, when she turned 25, made an investment of $20,000 at an interest rate of 6.5% compounded semi-annually. Now that she is 50
    8·1 answer
  • The heat transfer rate due to free convection from a vertical surface, 1 m high and 0.6 m wide, to quiescent air that is 20 K co
    12·1 answer
  • Which examples demonstrate tasks commonly performed in Maintenance/Operations jobs? Check all that apply.
    11·2 answers
  • 1. (1 points) What is the name of the drinking water supply well? a. VA1; b. VA24; c. VA19; d. VA40; e. VA18; 2. (1 points) What
    11·1 answer
  • The standard design conditions for air-conditioning systems established by the Air-Conditioning, Heating and Refrigeration Insti
    14·2 answers
  • Can someone please do this for me ive been sick for the past week and am behind
    6·1 answer
  • When block C is in position xC = 0.8 m, its speed is 1.5 m/s to the right. Find the velocity of block A at this instant. Note th
    14·1 answer
  • In a lab, scientists grew several generations of offspring of a plant using the method shown. What conclusion can you make about
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!