1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LUCKY_DIMON [66]
3 years ago
12

Can you use isentropic efficiency for a non-adiabatic compressor?

Engineering
1 answer:
vodomira [7]3 years ago
4 0
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
You might be interested in
Name the seven physical qualities for which standards have been developed.
SIZIF [17.4K]

Answer:

HUMAN DEVELOPMENT

MOTOR BEHAVIOR

EXERCISE SCIENCE

MEASUREMENT AND EVALUATION

HISTORY AND PHILOSOPHY

UNIQUE ATTRIBUTES OF LEARNERS

CURRICULUM THEORY AND DEVELOPMENT

Explanation:

6 0
4 years ago
All machines have three fundamental hazards: moving parts, point of operation, and?
OlgaM077 [116]

Answer:

All machines have three fundamental hazards: moving parts, point of operation, and the power transmission.

Explanation:

The unit that supplies power to the machine is a critical hazard due to high energy sources being potential fatal if proper protocols are not followed. This is why lockout tagout (LOTO) measures are put in place in order to protect people while they work on equipment.

3 0
2 years ago
A solid cylindrical workpiece made of 304 stainless steel is 150 mm in diameter and 100 mm is high. It is reduced in height by 5
goblinko [34]

Answer:

45.3 MN

Explanation:

The forging force at the end of the stroke is given by

F = Y.π.r².[1 + (2μr/3h)]

The final height, h is given as h = 100/2

h = 50 mm

Next, we find the final radius by applying the volume constancy law

volumes before deformation = volumes after deformation

π * 75² * 2 * 100 = π * r² * 2 * 50

75² * 2 = r²

r² = 11250

r = √11250

r = 106 mm

E = In(100/50)

E = 0.69

From the graph flow, we find that Y = 1000 MPa, and thus, we apply the formula

F = Y.π.r².[1 + (2μr/3h)]

F = 1000 * 3.142 * 0.106² * [1 + (2 * 0.2 * 0.106/ 3 * 0.05)]

F = 35.3 * [1 + 0.2826]

F = 35.3 * 1.2826

F = 45.3 MN

7 0
3 years ago
Investigating how slime molds reproduce is an example of applied research.<br> True<br> False
azamat

Answer:

false

Explanation:

3 0
3 years ago
It has been estimated that 139.2x10^6 m^2 of rainforest is destroyed each day. assume that the initial area of tropical rainfore
Dmitry [639]

Answer:

A. 6.96 x 10^-6 /day

B. 22.466 x 10^12 m^2

C. 9.1125 x 10^14 kg of CO2

Explanation:

A. Rate of rainforest destruction = 139.2 x 10^6 m^2/day

Initial area of the rainforest = 20 x 10^12 m^2

Therefore to calculate exponential rate in 1/day,

Rate of rainforest destruction/ initial area of rainforest

= 139.2 x 10^6/20 x 10^12

= 6.96 x 10^-6 /day

B. Rainforest left in 2015 using the rate in A.

2015 - 1975 = 40 years

(40 * 365 )days + 10 days (leap years)

= 14610 days

Area of rainforest in 1975 = 24.5 x 10^12m^2

Rate of rainforest destruction = 139.2 x 10^6 m^2/day

Area of rainforest in 2015 = 14610 * 139.2 x 10^6

= 2.034 x 10^12 m^2

Area left = area of rainforest in 1975 - area of rainforest destroyed in 40years

= 24.5 x 10^12 - 2.034 x 10^12

= 22.466 x 10^12 m^2

C. How much CO2 will be removed in 2025

Recall: Photosynthesis is the process of plants taking in CO2 and water to give glucose and O2.

So CO2 removed is the same as rainforest removed so we use the rate of rainforest removed in a day

Area of rainforest in 1975 = 24.5 x 10^12 m^2

Area of rainforest removed in 2025 = 18262 days * 139.2 x 10^6

= 2.54 x 10^12 m^2

Area of rainforest removed between 1975 - 2025 = 24.5 x 10^12 - 2.54 x 10^12

= 21.958 x 10^12 mC2 of rainforest removed

CO2 = 0.83kg/m^2.year

CO2 removed between 1975 - 2025 = 0.83 * 21.958 x 10^12 * 50 years

= 9.1125 x 10^14 kg of CO2 was removed between 1975 - 2025

6 0
3 years ago
Other questions:
  • Carbon dioxide (CO2) at 1 bar, 300 K enters a compressor operating at steady state and is compressed adiabatically to an exit st
    11·1 answer
  • A cylindrical rod of 1040 Steel originally 10.5 mm in diameter is to be cold worked by drawing to a final diameter of 8.5 mm. Th
    10·1 answer
  • Why does an object under forced convection reach a steady-state faster than an object subjected to free-convection?
    5·1 answer
  • Barry wants to convert mechanical energy into electric energy. What can he use?
    5·2 answers
  • Water vapor at 6 MPa, 600 degrees C enters a turbine operating at steady state and expands to 10kPa. The mass flow rate is 2 kg/
    14·1 answer
  • Which option distinguishes the step in the requirements engineering process described in the following scenario?
    9·2 answers
  • Air in a large tank at 300C and 400kPa, flows through a converging diverging nozzle with throat diameter 2cm. It exits smoothly
    11·1 answer
  • 2. Technician A says that the torque converter and transmission change engine revolutions per minute into torque to move the veh
    6·1 answer
  • Which option identifies the concept represented in the following scenario?
    7·1 answer
  • Any one be my sister​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!