Answer:I have no clue if you find out let me know
Explanation:
Answer: Photo lines
Explanation: made more sense
Answer:
Q = 424523.22 kw
Explanation:

k = 48.9 W/m - K
c = 0.115 KJ/kg- K


T_∞ = 35 degree celcius
velocity of air stream = 15 m/s
D = 40 cm
L = 200 cm
mass flow rate




solving for h

h = 675.6 kw/m^2K

Q = 675.6*2.513*(285-35)
Q = 424523.22 kw
Answer:
c. an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.
Explanation:
Conduction refers to the transfer of thermal energy or electric charge as a result of the movement of particles. When the conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.
In the process of heat conduction, thermal energy is usually transferred from fast moving particles to slow moving particles during the collision of these particles. Also, thermal energy is typically transferred between objects that has different degrees of temperature and materials (particles) that are directly in contact with each other but differ in their ability to accept or give up electrons.
Any material or object that allow the conduction (transfer) of electric charge or thermal energy is generally referred to as a conductor. Conductors include metal, steel, aluminum, copper, frying pan, pot, spoon etc.
Hence, the difference between an initial condition and a boundary condition for conduction in a solid is that an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.
Answer with Explanation:
The general equation of simple harmonic motion is

where,
A is the amplitude of motion
is the angular frequency of the motion
is known as initial phase
part 1)
Now by definition of velocity we have

part 2)
Now by definition of acceleration we have

part 3)
The angular frequency is related to Time period 'T' as
where
is the angular frequency of the motion of the particle.
Part 4) The acceleration and velocities are plotted below
since the maximum value that the sin(x) and cos(x) can achieve in their respective domains equals 1 thus the maximum value of acceleration and velocity is
and
respectively.