Answer:
q=2313.04
T=690.86°C
Explanation:
Given that
Thickness t= 20 cm
Thermal conductivity of firebrick= 1.6 W/m.K
Thermal conductivity of structural brick= 0.7 W/m.K
Inner temperature of firebrick=980°C
Outer temperature of structural brick =30°C
We know that thermal resistance

These are connect in series

Heat transfer

So heat flux
q=2313.04
Lets temperature between interface is T
Now by equating heat in both bricks

So T=690.86°C
Answer:
18.75in
Explanation:
Modulus of elasticity = Stress/Strain
Since stress = Force/Area
Given
Force = 1000lb
Area = 0.75sqin
Stress = 1000/0.75
Stress = 1333.33lbsqin
Strain
Strain = Stress/Modulus of elasticity
Strain = 1333.33/5,000,000
Strain = 0.0002667
Also
Strain = extension/original length
extension = 0.005in
Original length = extension/strain
Original length = 0.005/0.0002667
Original length = 18.75in
Hence the original length of the rectangular bar is 18.75in
Answer:
A key element is powering economies with clean energy, replacing polluting coal - and gas and oil-fired power stations - with renewable energy sources, such as wind or solar farms. This would dramatically reduce carbon emissions. Plus, renewable energy is now not only cleaner, but often cheaper than fossil fuels
Explanation:
here is your answer if you like my answer please follow
Answer:
a) 5.2 kPa
b) 49.3%
Explanation:
Given data:
Thermal efficiency ( л ) = 56.9% = 0.569
minimum pressure ( P1 ) = 100 kpa
<u>a) Determine the pressure at inlet to expansion process</u>
P2 = ?
r = 1.4
efficiency = 1 - [ 1 / (rp)
]
0.569 = 1 - [ 1 / (rp)^0.4/1.4
1 - 0.569 = 1 / (rp)^0.285
∴ (rp)^0.285 = 0.431
rp = 0.0522
note : rp = P2 / P1
therefore P2 = rp * P1 = 0.0522 * 100 kpa
= 5.2 kPa
b) Thermal efficiency
Л = 1 - [ 1 / ( 10.9 )^0.285 ]
= 0.493 = 49.3%