Friction losses in pipes can be reduced by decreasing the length of the pipes, reducing the surface roughness of the pipes, and increasing the pipe diameter. Thus, options (c),(e), and (f) hold correct answers.
Friction loss is a measure of the amount of energy a piping system loses because flowing fluids meet resistance. As fluids flow through the pipes, they carry energy with them. Unfortunately, whenever there is resistance to the flow rate, it diverts fluids, and energy escapes. These opposing forces result in friction loss in pipes.
Friction loss in pipes can decrease the efficiency of the functions of pipes. These are a few ways by which friction loss in pipes can be reduced and the efficiency of the piping system can be boosted:
- <u><em>Decrease the length of the pipes</em></u>: By decreasing pipe lengths and avoiding the use of sharp turns, fittings, and tees, whenever possible result in a more natural path for fluids to flow.
- <u><em>Reduce the surface roughness of the pipes</em></u>: By reducing the interior surface roughness of pipes, a smooth and clearer path is provided for liquids to flow.
- <u><em>Increase the pipe diameter: </em></u>By widening the diameters of pipes, it is ensured that fluids squeeze through pipes easily.
You can learn more about friction losses at
brainly.com/question/13348561
#SPJ4
Answer:
Hello Adam here! (UWU)
Explanation:
The advantages of 3D modeling for designers is not limited to productivity and coordination, it is an excellent communication tool for both the designer and end user. 3D models can help spark important conversations during the design phase and potentially avoid costly construction mishaps.
Happy to Help! (>.O)
Answer:
t = 2244.3 sec
Explanation:
calculate the thermal diffusivity


Temperature at 28 mm distance after t time = = 50 degree C
we know that

![\frac{ 50 -25}{300-25} = erf [\frac{28\times 10^{-3}}{2\sqrt{1.34\times 10^{-5}\times t}}]](https://tex.z-dn.net/?f=%5Cfrac%7B%2050%20-25%7D%7B300-25%7D%20%3D%20erf%20%5B%5Cfrac%7B28%5Ctimes%2010%5E%7B-3%7D%7D%7B2%5Csqrt%7B1.34%5Ctimes%2010%5E%7B-5%7D%5Ctimes%20t%7D%7D%5D)

from gaussian error function table , similarity variable w calculated as
erf w = 0.909
it is lie between erf w = 0.9008 and erf w = 0.11246 so by interpolation we have
w = 0.08073
![erf 0.08073 = erf[\frac{3.8245}{\sqrt{t}}]](https://tex.z-dn.net/?f=erf%200.08073%20%3D%20erf%5B%5Cfrac%7B3.8245%7D%7B%5Csqrt%7Bt%7D%7D%5D)

solving fot t we get
t = 2244.3 sec
Answer:
The turbocharger on a car applies a very similar principle to a piston engine. It uses the exhaust gas to drive a turbine. This spins an air compressor that pushes extra air (and oxygen) into the cylinders, allowing them to burn more fuel each second
Explanation: