Answer:

Explanation:
We are given:
m = 1.06Kg

T = 22kj
Therefore we need to find coefficient performance or the cycle


= 5
For the amount of heat absorbed:

= 5 × 22 = 110KJ
For the amount of heat rejected:

= 110 + 22 = 132KJ
[tex[ q_H = \frac{Q_L}{m} [/tex];
= 
= 124.5KJ
Using refrigerant table at hfg = 124.5KJ/Kg we have 69.5°c
Convert 69.5°c to K we have 342.5K
To find the minimum temperature:
;

= 285.4K
Convert to °C we have 12.4°C
From the refrigerant R -134a table at
= 12.4°c we have 442KPa
Answer:
1561.84 MPa
Explanation:
L=20 cm
d1=0.21 cm
d2=0.25 cm
F=5500 N
a) σ= F/A1= 5000/(π/4×(0.0025)^2)= 1018.5916 MPa
lateral strain= Δd/d1= (0.0021-0.0025)/0.0025= -0.16
longitudinal strain (ε_l)= -lateral strain/ν = -(-0.16)/0.3
(assuming a poisson's ration of 0.3)
ε_l =0.16/0.3 = 0.5333
b) σ_true= σ(1+ ε_l)= 1018.5916( 1+0.5333)
σ_true = 1561.84 MPa
ε_true = ln( 1+ε_l)= ln(1+0.5333)
ε_true= 0.4274222
The engineering stress on the rod when it is loaded with a 5500 N weight is 1561.84 MPa.
Answer:
a cycle or series of cycles of economic expansion and contraction.
Explanation:
Answer:
(a) 11.437 psia
(b) 13.963 psia
Explanation:
The pressure exerted by a fluid can be estimated by multiplying the density of the fluid, acceleration due to gravity and the depth of the fluid. To determine the fluid density, we have:
fluid density = specific gravity * density of water = 1.25 * 62.4 lbm/ft^3 = 78 lbm/ft^3
height = 28 in * (1 ft/12 in) = 2.33 ft
acceleration due to gravity = 32.174 ft/s^2
The change in pressure = fluid density*acceleration due to gravity*height = 78*32.174*(28/12) = 5855.668 lbm*ft/(s^2 * ft^2) = 5855.668 lbf/ft^2
The we convert from lbf/ft^2 to psi:
(5855.668/32.174)*0.00694 psi = 1.263 psi
(a) pressure = atmospheric pressure - change in pressure = 12.7 - 1.263 = 11.437 psia
(b) pressure = atmospheric pressure + change in pressure = 12.7 + 1.263 = 13.963 psia
Answer:
Negative feedback
Explanation:
In Biology, negative feedback refers to the counteraction of an effect by its own influence on the process producing it. For instance, the presence of a high level of a particular hormone in the blood may inhibit further secretion of that hormone.
In other words, in negative feedback, the result of a certain action may inhibit further performance of that action