1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saw5 [17]
4 years ago
15

The design specifications of a 1.2-m long solid circular transmission shaft require that the angle of twist of the shaft not exc

eed 4° when a torque of 750 N·m is applied. Determine the required diameter of the shaft, knowing that the shaft is made of a steel with an allowable shearing stress of 90 MPa and a modulus of rigidity of 77.2 GPa.
Engineering
1 answer:
Verizon [17]4 years ago
3 0

Answer:

c = 18.0569 mm

Explanation:

Strategy  

We will find required diameter based on angle of twist and based on shearing stress. The larger value will govern.  

Given Data  

Applied Torque

T = 750 N.m

Length of shaft

L = 1.2 m

Modulus of Rigidity

G = 77.2 GPa

Allowable Stress

г = 90 MPa

Maximum Angle of twist  

∅=4°

∅=4*\pi/180

∅=69.813 *10^-3 rad

Required Diameter based on angle of twist  

∅=TL/GJ

∅=TL/G*\pi/2*c^4

∅=2TL/G*\pi*c^4

c=\sqrt[4]{2TL/\pi G }∅

c=18.0869 *10^-3 rad

Required Diameter based on shearing stress

г = T/J*c

г = [T/(J*\pi/2*c^4)]*c

г =[2T/(J*\pi*c^4)]*c

c=17.441*10^-3 rad

Minimum Radius Required  

We will use larger of the two values  

c= 18.0569 x 10^-3 m  

c = 18.0569 mm  

You might be interested in
A furnace wall is to be built of 20-cm firebrick and building (structural) brick of same thickness. The thermal conductivities o
Norma-Jean [14]

Answer:

q=2313.04W/m^2

T=690.86°C

Explanation:

Given that

Thickness t= 20 cm

Thermal conductivity of firebrick= 1.6 W/m.K

Thermal conductivity of structural brick= 0.7 W/m.K

Inner temperature of firebrick=980°C

Outer temperature of structural brick =30°C

We know that thermal resistance

R=\dfrac{t}{KA}

These are connect in series

R=\left(\dfrac{t}{KA}\right)_{fire}+\left(\dfrac{t}{KA}\right)_{struc}

R=\dfrac{0.2}{1.6A}+\dfrac{0.2}{0.7A}\ K/W

R=\dfrac{23}{56A}\ K/W

Heat transfer

Q=\dfrac{\Delta T}{R}

Q=56A\times \dfrac{980-30}{23}\ W

So heat flux

q=2313.04W/m^2

Lets temperature between interface is T

Now by equating heat in both bricks

\dfrac{980-T}{\dfrac{0.2}{1.6A}}=\dfrac{T-30}{\dfrac{0.2}{0.7A}}

So T=690.86°C

6 0
3 years ago
2. What is the original length of the rectangular bar if the deformation is 0.005 in with a force of 1000 lbs and an area of 0.7
Ugo [173]

Answer:

18.75in

Explanation:

Modulus of elasticity = Stress/Strain

Since stress = Force/Area

Given

Force = 1000lb

Area = 0.75sqin

Stress = 1000/0.75

Stress = 1333.33lbsqin

Strain

Strain = Stress/Modulus of elasticity

Strain = 1333.33/5,000,000

Strain = 0.0002667

Also

Strain = extension/original length

extension = 0.005in

Original length = extension/strain

Original length = 0.005/0.0002667

Original length = 18.75in

Hence the original length of the rectangular bar is 18.75in

6 0
3 years ago
What major advancement in machine tools occurred in the 1970s and what benefits did it provide? describe in your own words.
mixer [17]

Answer:

I'm just a seventh grader

4 0
3 years ago
Read 2 more answers
What do we need to do to get CO2 emissions all the way to zero?
Svetlanka [38]

Answer:

A key element is powering economies with clean energy, replacing polluting coal - and gas and oil-fired power stations - with renewable energy sources, such as wind or solar farms. This would dramatically reduce carbon emissions. Plus, renewable energy is now not only cleaner, but often cheaper than fossil fuels

Explanation:

here is your answer if you like my answer please follow

3 0
3 years ago
A cold air standard gas turbine engine with a thermal efficiency of 56.9 % has a minimum pressure of 100 kP
Aleks04 [339]

Answer:

a) 5.2 kPa

b) 49.3%

Explanation:

Given data:

Thermal efficiency ( л ) = 56.9% = 0.569

minimum pressure ( P1 ) = 100 kpa

<u>a) Determine the pressure at inlet to expansion process</u>

P2 = ?

r = 1.4

efficiency = 1 - [ 1 / (rp)\frac{r-1}{r} ]

   0.569   = 1 - [ 1 / (rp)^0.4/1.4

1 - 0.569  = 1 / (rp)^0.285

∴ (rp)^0.285 = 0.431

rp = 0.0522

note : rp = P2 / P1

therefore P2 = rp * P1 = 0.0522 * 100 kpa

                                   = 5.2 kPa  

b) Thermal efficiency

Л = 1 - [ 1 / ( 10.9 )^0.285 ]

   = 0.493 = 49.3%

4 0
3 years ago
Other questions:
  • Your new mobile phone business is now approaching its first anniversary and you are able to step back and finally take a deep br
    8·1 answer
  • Explain about Absolute viscosity, kinematic viscosity and SUS?
    11·1 answer
  • Early American rockets used an RC circuit to set the time for the rocket to begin re-entry after launch (true story). Assume the
    5·1 answer
  • A long, cylindrical, electrical heating element of diameter 10 mm, thermal conductivity 240 W/m·K, density 2700 kg/m3, and speci
    10·1 answer
  • What material property would still cause strain in a strain gauge that is positionedperpendicular to the direction of force if i
    6·1 answer
  • A fan draws air from the atmosphere through a 0.30-mdiameter round duct that has a smoothly rounded entrance. A differential man
    14·1 answer
  • Order of Design Process steps ?
    13·1 answer
  • Please help, Artificial Intelligence class test
    12·1 answer
  • Drag each label to the correct location on the table. Match to identify permanent and temporary structures.
    15·1 answer
  • What is the relationship between compressor work and COPR?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!