This structure is correct due to the total number of bonds and electrons
We employ the octet rule, which states that all atoms in a compound are expected to follow, to check the accuracy of any chemical structure. The octet rule is precisely satisfied for each atom in the depicted structure of carbon IV oxide. The valence shell of each atom in the molecule is surrounded by eight electrons. We may thus infer that this structure is accurate given the total number of bonds and electrons since CO2 has sixteen valence electrons.
It possesses a negative charge of 1.602176634 coulombs, the basic unit of electric charge, which is comparable to its negative charge. The rest mass of an electron is 9.1093837015 10^-31 kg, or just 1/1,836 the mass of a proton. An electron is therefore considered to have practically negligible mass in comparison to a proton or neutron, and its matter is not taken into consideration when calculating an atom's mass number.
The question is incomplete, the complete question is found in the image attached to this answer
To know more about bonds visit : brainly.com/question/13190131
#SPJ4
Answer: 24 moles of
are produced.
Explanation:
To calculate the moles :

According to stoichiometry :
1 mole of
is accompanied with = 1 mole of 
Thus 24 moles of
is accompanied with =
of 
Thus 24 moles of
are produced.
Atomic number.
The atomic number is what defines the element.
Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).