Answer : The solubility of this compound in g/L is
.
Solution : Given,

Molar mass of
= 114.945g/mole
The balanced equilibrium reaction is,

At equilibrium s s
The expression for solubility constant is,
![K_{sp}=[Mn^{2+}][CO^{2-}_3]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BMn%5E%7B2%2B%7D%5D%5BCO%5E%7B2-%7D_3%5D)
Now put the given values in this expression, we get

The value of 's' is the molar concentration of manganese ion and carbonate ion.
Now we have to calculate the solubility in terms of g/L multiplying by the Molar mass of the given compound.

Therefore, the solubility of this compound in g/L is
.
<u>Answer:</u> The concentration of hydrogen gas at equilibrium is 0.0275 M
<u>Explanation:</u>
Molarity is calculated by using the equation:

Moles of HI = 0.550 moles
Volume of container = 2.00 L

For the given chemical equation:

<u>Initial:</u> 0.275
<u>At eqllm:</u> 0.275-2x x x
The expression of
for above equation follows:
![K_c=\frac{[H_2][I_2]}{[HI]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
We are given:

Putting values in above expression, we get:

Neglecting the negative value of 'x' because concentration cannot be negative
So, equilibrium concentration of hydrogen gas = x = 0.0275 M
Hence, the concentration of hydrogen gas at equilibrium is 0.0275 M
Answer:
D. 18.7 grams
Explanation:
The coefficients are the key.
Create a proportion with them, and the molar mass, and then solve for x:

It’s B. Substitution hope this helps
Answer:
CH₄
Explanation:
CH₃OH has hydrogen bonding due to the OH group present
NH₃ also has hydrogen bonding due to the NH bonds
H₂S has dipole-dipole forces present due to the polar SH bonds
HCl also has dipole-dipole forces due to the polar HCl bond