Answer:- 0.0211 moles of air.
Solution:- This problem is based on an ideal gas law equation.
temperature, pressure and volume are given and asked to calculate the moles of the air. Standard pressure is 1.00 atm.
T = 15 + 273 = 288 K
P = 1.00 atm
V = 0.500 L
The ideal gas law equation is, PV = nRT
where R is the universal gas law constant and its value is 0.0821 atm.L per mol per K.
n is the number of moles and its what we are asked to calculate.
For n, the equation is rearranged as:

Let's plug in the values and do the calculations:

n = 0.0211 moles
So, there are 0.0211 moles of the air in the bottle.
Answer:
When the transfer of electrons occurs, an electrostatic attraction between the two ions of opposite charge takes place and an ionic bond is formed. A salt such as sodium chloride (NaCl) is a good example of a molecule with ionic bonding
When the number of electrons decreases, the charge of the atom becomes more positive.
The answer is letter A, bacterial decay.
Answer:
Mass of Rb-87 is 86.913 amu.
Explanation:
Given data:
Average mass of rubidium = 85.4678 amu
Mass of Rb-85 = 84.9117
Ratio of 85Rb/87Rb in natural rubidium = 2.591
Mass of Rb = ?
Solution:
The ration of both isotope is 2.591 to 1. Which means that for 2.591 atoms of Rb-85 there is one Rb-87.
For 100% naturally occurring Rb = 2.591 + 1 = 3.591
% abundance of Rb-85 = 2.591/ 3.591 = 0.722
% abundance of Rb-87 = 1 - 0.722= 0.278
84.9117 × 0.722 + X × 0.278 = 85.4678
61.306 + X × 0.278 = 85.4678
X × 0.278 = 85.4678 - 61.306
X × 0.278 = 24.1618
X = 24.1618 / 0.278
X = 86.913 amu