from the question you can see that some detail is missing, using search engines i was able to get a similar question on "https://www.slader.com/discussion/question/a-student-throws-a-water-balloon-vertically-downward-from-the-top-of-a-building-the-balloon-leaves-t/"
here is the question : A student throws a water balloon vertically downward from the top of a building. The balloon leaves the thrower's hand with a speed of 60.0m/s. Air resistance may be ignored,so the water balloon is in free fall after it leaves the throwers hand. a) What is its speed after falling for 2.00s? b) How far does it fall in 2.00s? c) What is the magnitude of its velocity after falling 10.0m?
Answer:
(A) 26 m/s
(B) 32.4 m
(C) v = 15.4 m/s
Explanation:
initial speed (u) = 6.4 m/s
acceleration due to gravity (a) = 9.9 m/s^[2}
time (t) = 2 s
(A) What is its speed after falling for 2.00s?
from the equation of motion v = u + at we can get the speed
v = 6.4 + (9.8 x 2) = 26 m/s
(B) How far does it fall in 2.00s?
from the equation of motion
we can get the distance covered
s = (6.4 x 2) + (0.5 x 9.8 x 2 x 2)
s = 12.8 + 19.6 = 32.4 m
c) What is the magnitude of its velocity after falling 10.0m?
from the equation of motion below we can get the velocity

v = 15.4 m/s
Answer:
a) 86 atm
b) 86 atm
c) 645 m/s
Explanation:
See attachment for calculations on how i arrived at the answer
It is customary to work in SI units.
Calculate the volume of the concrete.
V = 3.7*2.1*5.8 cm³ = 45.066 cm³ = 45.066 x 10 ⁻⁶ m³
The mass is 43.8 g = 43.8 x 10⁻³ kg
The density is mass/volume.
Density = (43.8 x 10⁻³ kg)/(45.066 x 10⁻⁶ m³) = 971.9 kg/m³
Answer: 971.9 kg/m³
Answer:
Red shift supports the big bang theory. ... The light from distant galaxies is red shifted (this tells us the galaxies are moving away from us) and the further away the galaxy the greater the red shift (this tells us that the more distant the galaxy the faster it is moving). Constellations look like they are moving because earth is rotating on it's axis.
May I have brainliest, please?