Rotational speed of an object around an axis is the numbers of turns of the object divided by time. <span />
Answer: A symbolic expression for the net force on a third point charge +Q located along the y axis
![F_N=k_e\frac{Q^2}{d^2}\times \sqrt{[4+\frac{1}{4}-\sqrt{2}]}](https://tex.z-dn.net/?f=F_N%3Dk_e%5Cfrac%7BQ%5E2%7D%7Bd%5E2%7D%5Ctimes%20%5Csqrt%7B%5B4%2B%5Cfrac%7B1%7D%7B4%7D-%5Csqrt%7B2%7D%5D%7D)
Explanation:
Let the force on +Q charge y-axis due to +2Q charge be
and force on +Q charge y axis due to -Q charge on x-axis be
.
Distance between the +2Q charge and +Q charge = d units
Distance between the -Q charge and +Q charge =
units
= Coulomb constant


Net force on +Q charge on y-axis is:




![|F_N|=|k_e\frac{Q^2}{d^2}\times \sqrt{[4+\frac{1}{4}-\sqrt{2}]}|](https://tex.z-dn.net/?f=%7CF_N%7C%3D%7Ck_e%5Cfrac%7BQ%5E2%7D%7Bd%5E2%7D%5Ctimes%20%5Csqrt%7B%5B4%2B%5Cfrac%7B1%7D%7B4%7D-%5Csqrt%7B2%7D%5D%7D%7C)
The net froce on the +Q charge on y-axis is
![F_N=k_e\frac{Q^2}{d^2}\times \sqrt{[4+\frac{1}{4}-\sqrt{2}]}](https://tex.z-dn.net/?f=F_N%3Dk_e%5Cfrac%7BQ%5E2%7D%7Bd%5E2%7D%5Ctimes%20%5Csqrt%7B%5B4%2B%5Cfrac%7B1%7D%7B4%7D-%5Csqrt%7B2%7D%5D%7D)
Jaydbrbstgsbwiybsbdd to nebsndhbd
Answer:
4. Downward and its value is constant
Explanation:
As this is a case of projectile motion, we use the reference frame where upward direction to be positive for
, and in the same way to be negative in the downward direction. On another hand, we have that gravity is always acting this means that gravitational acceleration g is directed downward constantly over the dart not only during the upward but also during the downward part of the trajectory. And it is ruled by the following equations.
For the x-axis


For the y-axis


Where
, is the initial velocity.