Answer: The average rate of the reaction during this time interval is, 0.005 M/s
Explanation:
The given chemical reaction is:

The expression will be:

where,
= final concentration of
= 0.025 M
= initial concentration of
= 0.100 M
= final time = 15 minutes
= initial time = 0 minutes
Putting values in above equation, we get:


Hence, the average rate of the reaction during this time interval is, 0.005 M/s
Answer:
The Empirical Formular is given as; Ti₆Al₄V
Explanation:
The percent composition of the material is 64.39% titanium, 24.19% aluminum, and 11.42% vanadium.
Elements Titanium Aluminium Vanadium
Percentage 64.39 24.19 11.42
Divide all through by their molar mass
64.39 / 47.87 24.19 / 27 11.42 / 50.94
= 1.345 = 0.896 = 0.224
Divide all though by the smallest number (0.224)
1.345 / 0.224 0.896 / 0.224 0.224 / 0.224
= 6 = 4 = 1
The Empirical Formular is given as; Ti₆Al₄V
It would be NaOH + HCl → <span>NaCl + H2O
</span>
NaOH is sodium hydroxide, which is a strong base. HCl is hydrochloric acid, which is a strong acid.
You have a strong base and a strong acid on the left side, however, at the result side, you end up with NaCl + H2O. Sodium chloride is simply table salt and H2O is just water, thus it has been neutralized.
Answer:
318.749g
Explanation:
The find the mass,
We use this formula
Number of mole = mass/ molar mass
Since number of mole = 3.25mol
Let the number of mass be x
The molar mass of H2SO4
H - 1.00784 * 2= 2.01568
S - 32.065
O - 15.999 * 4 = 63.996
Note there are 2 moles of H and 4 moles of O and 1 mole of S
Molar mass of H2SO4 = 2.01568 + 32.065 + 63.996
= 98.07668g/mol
Number of mole= 3.25mol
3.25 = x / 98.07668
x = 3.25 * 98.07668
x= 318.749g
Hence, the number of mass is 318.749g
Hope it will help you.
Answer:
The correct option is the A
Explanation:
Like oxygen is more electronegative than hydrogen, it attracts electrons stronger than hydrogen. Therefore the two covalent bonds are polar.
The option b is incorrect because if oxygen and hydrogen had similar electronegativities, they would form no-polar bonds.
The option c is incorrect because oxygen is more electronegative than hydrogen (you can check that in a periodic table).
The options d and e are incorrect because the molecular size or hydrophilic don't influence the type bond.