An electron has a negative charge of one
An neutron has no charge (hence, neutral)
An proton has a positive charge of one
~
Answer:
a) Mo the electron configuration: 42Mo: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d4
Mo3+ - is Paramagnetic
b) Au - [Xe] 4f14 5d10 6s1
For Au+ is not paramagnetic
c) Mn - [Ar] 3d5 4s2
Mn2+ is paramagnetic
d)Hf -[Xe] 4f¹⁴ 5d² 6s²
Hf2+ is not paramagnetic
Explanation:
An atom becomes positively charged when it looses an electron.
Diamagnetism in atom occurs whenever two electrons in an orbital paired equalises with a total spin of 0.
Paramagnetism in atom occurs whenever at least one orbital of an atom has a net spin of electron. That is a paramagnetic electron is just an unpaired electron in the atom.
Here is a twist even if an atom have ten diamagnetic electrons, the presence of at least one paramagnetic electron, makes it to be considered as a paramagnetic atom.
Simply put paramagnetic elements are one that have unpaired electrons, whereas diamagnetic elements do have paired electron.
Answer:
1.9 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 1.5 atm
- Initial volume (V₁): 3.0 L
- Initial temperature (T₁): 293 K
- Final pressure (P₂): 2.5 atm
- Final temperature (T₂): 303 K
Step 2: Calculate the final volume of the gas
If we assume ideal behavior, we can calculate the final volume of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂ / T₁ × P₂
V₂ = 1.5 atm × 3.0 L × 303 K / 293 K × 2.5 atm = 1.9 L