<span>The jump from 1966 to 16347 is the largest one or simply we can say it is hard to lose the 3rd electron.Whereas, it is relatively easy to lose the first two electrons.
So there will be only 2 electrons in the outer most shell.
According to the information mentioned above we can conclude the </span><span>unknown element likely belongs to the second group.
</span><span>I2 = 1752 kj/mol</span>
"A is correct answer." The effective length of the tube is responsible for determining the frequency of vibration of the air column in the tube within a wind instrument. "Hope this helps!" "Have a great day!" "Thank you for posting your question!"
no because nuclear energy come from kinetic not potential energy. burning a wax candle is an example of heat/thermal energy .
Answer:
Explanation:
For entry of light into tube of unknown refractive index
sin ( 90 - 25 ) / sinr = μ , μ is the refractive index of the tube , r is angle of refraction in the medium of tube
r = 90 - C where C is critical angle between μ and body medium in which tube will be inserted.
sin ( 90 - 25 ) / sin( 90 - C) = μ
sin65 / cos C = μ
sinC = 1.33 / μ , where 1.33 is the refractive index of body liquid.
From these equations
sin65 / cos C = 1.33 / sinC
TanC = 1.33 / sin65
TanC = 1.33 / .9063
TanC = 1.4675
C= 56°
sinC = 1.33 / μ
μ = 1.33 / sinC
= 1.33 / sin56
= 1.33 / .829
μ = 1.6 Ans
This can be solved using momentum balance, since momentum is conserved, the momentum at point 1 is equal to the momentum of point 2. momentum = mass x velocity
m1v1 = m2v2
(0.03kg x 900 m/s ) = 320(v2)
v2 = 27 / 320
v2 = 0.084 m/s is the speed of the astronaut