Answer:
The magnitude of the uniform magnetic field exerting this torque on the loop is 1.67 T
Explanation:
Given;
radius of the wire, r = 0.45 m
current on the loop, I = 2.4 A
angle of inclination, θ = 36⁰
torque on the coil, τ = 1.5 N.m
The torque on the coil is given by;
τ = NIBAsinθ
where;
B is the magnetic field
Area of the loop is given by;
A = πr² = π(0.45)² = 0.636 m
τ = NIBAsinθ
1.5 = (1 x 2.4 x 0.636 x sin36)B
1.5 = 0.8972B
B = 1.5 / 0.8972
B = 1.67 T
Therefore, the magnitude of the uniform magnetic field exerting this torque on the loop is 1.67 T
Correct Question:-
A jack exerts a vertical force of 4.5 × 10³
newtons to raise a car 0.25 meter. How much
work is done by the jack?

Given :-



To find:-


Solution:-
we know :-


So:-



























I think the answer is 45 N Right
Hopefully I helped
Answer:
In an elastic collision, the total kinetic energy is conserved, while in an inelastic collision, it is not
Explanation:
Let's define the two types of collision:
- Elastic collision: an elastic collision is a collision in which:
1) the total momentum of the system is conserved
2) the total kinetic energy of the system is conserved
Typically, elastic collisions occur when there are no frictional forces acting on the objects in the system, so that no kinetic energy is lost into thermal energy. An example of elastic collision is the collision between biliard balls.
- Inelastic collision: an inelastic collision is a collision in which:
1 ) the total momentum of the system is conserved
2) the total kinetic energy of the system is NOT conserved
In an elastic collision, part of the total kinetic energy is lost (=converted into thermal energy) due to the presence of frictional forces. An example of inelastic collision is the accident between two cars, in which part of the energy is converted into heat.
Both bricks will hit the ground at the same time.
Falling vertically is always accelerating at 9.8 m/s² because of gravity.
Nothing that's happening horizontally has any effect on that.
The brick that happens to have some horizontal motion will
probably hit the ground way over there, but that will still be
at the same TIME as this one.
This is a perfect place to remind you of the old unbelievable story,
which I'll bet you heard before:
If you fire a bullet horizontally from a gun, and at the exact same
moment you DROP another bullet out of your hand next to the gun,
the two bullets will hit the ground at the same time ! Even though
they'll be far apart.
Horizontal speed has no effect on vertical behavior.