Answer:
2.87 km/s
Explanation:
radius of planet, R = 1.74 x 10^6 m
Mass of planet, M = 7.35 x 10^22 kg
height, h = 2.55 x 10^6 m
G = 6.67 x 106-11 Nm^2/kg^2
Use teh formula for acceleration due to gravity


g = 1.62 m/s^2
initial velocity, u = ?, h = 2.55 x 10^6 m , final velocity, v = 0
Use third equation of motion

0 = v² - 2 x 1.62 x 2.55 x 10^6
v² = 8262000
v = 2874.37 m/s
v = 2.87 km/s
Thus, the initial speed should be 2.87 km/s.