For the first part, we are looking for Vf when dy=11.0
Upward is positive, downward is negative.
So <span>Vf = square root [2(-9.8)(11.0) + (18.0)^2] </span>
<span>Vf = 10.4 m/s your answer is correct.
For the part b, t is equals to the time took to reach and dy is equals to 11.0
you did, </span>11= 18t m/s-(1/2) 9.8t^2 then <span>-11 + 18t- 9.8t^2. By quadratic formula, for the way down the answer is 2.9 s while on it's way up, the answer is 0.77 s</span><span>
</span>
Answer:
The prediction for its maximum potential energy is 109,375 J
Explanation:
Given;
mass of the coaster car, m = 350 kg
speed of the coaster car at the lowest point, v = 25 m/s
The coaster car will have maximum kinetic energy at the lowest point and based on law of conservation of mechanical energy, the maximum kinetic energy of the coaster car at the lowest point will be equal to maximum potential energy at the highest point.



Therefore, the prediction for its maximum potential energy is 109,375 J
A joule is one Newton of force applied over a meter.
For every meter, the brakes put 240000N of force (N=Newtons).
For 40m, multiply the Newtons by 40.
240000N*40=9600000N
Explanation:
SUPONIENDO QUE LA ACELERACIÓN DE LA GRAVEDAD ES 
USANDO LA SEGUNDA LEY DE NEWTON:
<em>m</em> = 80.0 N/
= 8.16 kg