C.an equal and opposite reaction
Answer:
M. Magnetism is a property of individual atoms.
Explanation:
when a magnet is broken into pieces the new pieces behave like the original magnet this observation shows that magnetism is the property of individual atoms.
The work done by force on a spring hung from the ceiling will be 1.67 J
Any two things with mass are drawn together by the gravitational pull. We refer to the gravitational force as attractive because it consistently seeks to draw masses together rather than pushing them apart.
Given that a spring is hung from the ceiling with a 2.0-kg mass suspended hung from the spring extends it by 6.0 cm and a downward external force applied to the mass extends the spring an additional 10 cm.
We need to find the work done by the force
Given mass is of 2 kg
So let,
F = 2 kg
x = 0.1 m
Stiffness of spring = k = F/x
k = 20/0.006 = 333 n/m
Now the formula to find the work done by force will be as follow:
Workdone = W = 0.5kx²
W = 0.5 x 333 x 0.1²
W = 1.67 J
Hence the work done by force on a spring hung from the ceiling will be 1.67 J
Learn more about force here:
brainly.com/question/12970081
#SPJ4
Answer:
Archimedes' principle states that, when a body is partially or completely immersed in a fluid, it experiences an apparent loss in weight that is equal to the weight of the fluid displaced by the immersed part of the body.
Explanation:
Archimedes' principle allows the buoyancy of an object partially or fully immersed in a fluid to be calculated. The downward force on the object is simply its weight. Thus, the net force on the object is the difference between the magnitudes
of the buoyant force and its weight. If this net force is positive, the object rises; if negative, the object sinks; and if zero, the object is neutrally buoyant - that is, it remains in place without either rising or sinking. In simple words,
Answer:
The magnetic field is lowest for largest distance and highest when distance is least.
Explanation:
The magnitude of magnetic field strength at a distance 'r' from a long straight wire carrying current 'I' is given as:

Now, as per question, the distance 'r' is varied while keeping the current constant in the wire.
As seen from the above formula, the magnitude of magnetic field strength for a constant current varies inversely with the distance 'r'. This means that, as the value of 'r' increases, the magnitude of magnetic field strength decreases and vice-versa.
Therefore, the magnitude of magnetic field strength is maximum when the distance 'r' is least and the magnetic field is minimum for the largest distance.
Example:
If
are the magnitudes of magnetic field strengths for distances
respectively such that
. Now, as per the explanation above, the order of magnitudes of magnetic field strength is:
