Archimedes principle states
that
F1 / A1 = F2 / A2
F2 = (A2 / A1) * F1
Also, formula for the force is
F = mg. Formula for the area of the cylinder is A = πr^2, therefore we get
F2 = (πr2^2 / πr1^2) * mg
Since the diameter of the
cylinders are 2 cm and 24 cm, r1 = 12 and r2 = 1.
Substituting the values to the
derived equation, we get
F2 = (π 1^2 / π 12^2) * 2400 * 9.8
F2 = 163.3333 N
<span> </span>
Answer:
If I double the current in the inductor, the new total energy will become 4E (option f).
Explanation:
The coil or inductor is a passive component made of an insulated wire that stores energy in the form of a magnetic field due to its form of coiled turns of wire, through a phenomenon called self-induction. In other words, inductors store energy in the form of a magnetic field. The energy stored in the space where there is a magnetic field in the inductor is:

where E is Energy [J], L is Inductance [H] and I is Current [A].
If you double the current in the inductor, then the new value of the current is I'= 2*I. So replacing the new total energy is:

Then:

<em><u>If I double the current in the inductor, the new total energy will become 4E (option f).</u></em>
Hello,
Average speed is total distance divided by total time. From the problem, our total distance is given as 500 kilometers and given time is 5 hours. Therefore, the average speed is:

Therefore, the average speed is 100 km/h. Please let me know if you have any questions!
Answer:
Explanation:
F = mω²R
F = 15(2π/8.5)²(7.8)
F = 63.93044788...
F = 63.9 N
answer a) is the closest. No idea how they got a value that low unless they used a poor approximation for π.
Answer:

Explanation:
As we know that the angular acceleration of the wheel due to friction is constant
so we can use kinematics

so we have



now time required to completely stop the wheel is given as



now time required to stop the wheel is given as

