Answer:
36290 min = 604.8 hr.
Explanation:
1 lbs = 453.59237 grams.
∴ 2 lbs = 907.18474 grams.
<em><u>Using cross multiplication:</u></em>
500 mg of iron oxide dissolved → 20 minutes.
907184.74 mg of iron oxide dissolved → ??? minutes.
<em>∴ The time needed to dissolve 2 lbs of iron oxide =</em> (907184.74 mg)(20 min)/(500 mg) = <em>36290 min = 604.8 hr.</em>
<span>Fungal diseases are difficult to treat mainly because they are eukaryotic organisms just like us humans, and therefore have less differences for drugs to target without harming the human body as well. Most antibiotics target e.g. the peptidoglycan layer in the bacterial (a prokaryote) cell wall, which is a safe target since eukaryotic cells do not have equivalent structures. Similarly many differences in metabolic pathways between humans and prokaryotes is often targeted by antibiotics, but metabolism of fungi and humans is much more uniform, and hence it is difficult to exclusively target the fungi only.
HOPE THIS HELPS!
</span>
The best and most correct answer among the choices provided by your question is all of the above.
All of the choices given are the best ways to explain a nuclear reaction.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
a) Limiting: sulfur. Excess: aluminium.
b) 1.56g Al₂S₃.
c) 0.72g Al
Explanation:
Hello,
In this case, the initial mass of both aluminium and sulfur are missing, therefore, one could assume they are 1.00 g for each one. Thus, by considering the undergoing chemical reaction turns out:

a) Thus, considering the assumed mass (which could be changed based on the one you are given), the limiting reagent is identified as shown below:

Thereby, since there 1.00g of aluminium will consume 0.0554 mol of sulfur but there are just 0.0156 mol available, the limiting reagent is sulfur and the excess reagent is aluminium.
b) By stoichiometry, the produced grams of aluminium sulfide are:

c) The leftover is computed as follows:

NOTE: Remember I assumed the quantities, they could change based on those you are given, so the results might be different, but the procedure is quite the same.
Best regards.
I would have to say the answer is a. True.