Mass of H2C2O4 :
mm = 90.04 g/mol
number of moles : 0.0223 moles
m = n * mm
m = 0.0223 * 90.04
m = 2.007 g
hope this helps!.
There are a number of
ways to express concentration of a solution. This includes molarity. Molarity
is expressed as the number of moles of solute per volume of the solution. The
concentration of the solution is calculated as follows:
<span> </span><span>Molarity = 15.5 g NaOH (1 mol NaOH / 40 g NaOH) / .250 L
solution</span>
<span>Molarity = 1.55 M</span>
It is called a polyatomic ion.
Hope this helps!!!
Explanation:
As it is given that solubility of water in diethyl ether is 1.468 %. This means that in 100 ml saturated solution water present is 1.468 ml.
Hence, amount of diethyl ether present will be calculated as follows.
(100ml - 1.468 ml)
= 98.532 ml
So, it means that 98.532 ml of diethyl ether can dissolve 1.468 ml of water.
Hence, 23 ml of diethyl ether can dissolve the amount of water will be calculated as follows.
Amount of water = 
= 0.3427 ml
Now, when magnesium dissolves in water then the reaction will be as follows.

Molar mass of Mg = 24.305 g
Molar mass of
= 18 g
Therefore, amount of magnesium present in 0.3427 ml of water is calculated as follows.
Amount of Mg =
= 0.462 g
Explanation:
(a) potassium oxide with water

According to reaction,1 mole of potassium oxide reacts with 1 mole of water to give 1 mole of potassium hydroxide.
(b) diphosphorus trioxide with water

According to reaction,1 mole of diphosphorus trioxide reacts with 2 moles of water to give 2 moles of phosphorus acid.
(c) chromium(III) oxide with dilute hydrochloric acid,

According to reaction,1 mole of chromium(III) oxide reacts with 6 moles of hydrochloric acid to give 2 moles of chromium(III) chloride and 3 moles of water.
(d) selenium dioxide with aqueous potassium hydroxide

According to reaction,1 mole of selenium dioxide reacts with 2 moles of potassium hydroxide to give 1 mole of potassium selenite and 1 mole of water.