Answer:
A) Polar molecules have a non-zero net dipole moment. Both CO2 and H2O have two polar bonds. However the dipoles in the linear CO2 molecule cancel each other out, meaning that the CO2 molecule is non-polar. The polar bonds in the bent H2O molecule result in a net dipole moment, so H2O is polar.
B) In PCl5, in addition to equitorial bonds which lie in the same plane, there are axial it suffers more repulsion it is longer than the other bonds; hence PCl5 decomposes to form PCl3. So PCl5 is highly reactive. Source(s): 5 Heavy ElectroNegative atoms in One Molecule Lone Pair.
C) In h2o there is hydrogen bonding because oxygen has a high electronegativity (only second to flourine). so, the hydrogen atoms from other molecules of water forms a hydrogen bonds with oxygen resulting in intermolecular hydrogen bonding. therefore at room temperature h2o is a liquid and h2s is a gas.
Hope this helps also can you answer my question after since I helped you prepare for your exam.
Explanation:
Answer: it they are both in the same place
Explanation:I don’t know and don’t care loser
Answer:
The equilibrium constant Ksp of the generic salt AB2 = 6.4777 *10^-8 M
Explanation:
Step 1: The balanced equation
AB2 ⇒ A2+ + 2B-
Step 2: Given data
Concentration of A2+ = 0.00253 M
Concentration of B- = 0.00506 M
Step 3: Calculate the equilibrium constant
Equilibrium constant Ksp of [AB2] = [A2+][B-]²
Ksp = 0.00253 * 0.00506² = 6.4777 *10^-8 M
The equilibrium constant Ksp of the generic salt AB2 = 6.4777 *10^-8 M
Answer is: 4) The same subscripts are on each side of the equation.
For example, balanced chemical reaction:
2Mg + O₂ → 2MgO.
1) The same number of atoms is on each side of the equation: two magnesium atoms and two oxgen atoms.
2) The formulas for all substances are correct: in magnesium oxide (MgO), magnesium has oxidation number +2 and oxygen -2, so formula is good, because compound must be neutral.
3) The same mass is represented on each side of the equation: because there is same number of atoms, the mass is the same.
4) The same subscripts are on each side of the equation: oxygen does not have same subscripts.
The vapor pressure of a compound refers to the pressure generated by the vapour of a compound in equilibrium with its condensed stage. The major determinant of a compound vapour pressure is temperature. The vapour pressure of an aqueous solution of sodium chloride will be lower than that of pure water. This is because, dissolution of solute in a solvent always reduces the vapour pressure of the solution as a result of interactions between the molecule of the solute and the solvent. Thus, a pure compound will always have a higher vapour pressure than a solution.