Answer:
light energy to convert carbon dioxide and water into glucose and oxygen gas. Each molecule of glucose essentially “stores” up to 38 molecules of ATP which can be broken down and used during other cellular reactions.
Explanation:
Answer:
The water is solvent and the salt is solute
Answer:
the entropy change for the surroundings when 1.62 moles of CH4(g) react at standard conditions is −8.343 J/K
Explanation:
The balanced chemical equation of the reaction in the question given is:
Using standard thermodynamic data at 298K.
The entropy of each compound above are listed as follows in a respective order.
Entropy of (CH4(g)) = 186.264 J/mol.K
Entropy of (O2(g)) = 205.138 J/mol.K
Entropy of (CO2(g)) = 213.74 J/mol.K
Entropy of (H2O(g)) = 188.825 J/mol.K
The change in Entropy (S) of the reaction is therefore calculated as follows:
= -5.15 J/mol.K
Given that :
the number of moles = 1.62 of CH4(g) react at standard conditions.
Then;
The change in entropy of the rxn
= −8.343 J/K
The one with feather. because it was probably form the Dino era
<span>use this formula mass = moles x molar mass</span>