Explanation:
It is known that relation between wavelength and frequency is as follows.

where,
= wavelength
c = speed of light = 
[/tex]\nu[/tex] = frequency
It is given that frequency is
. Hence, putting this value into the above formula and calculate the wavelength as follows.


= 
or, = 
Thus, we can conclude that wavelength of given radiation is
.
Answer:
6.4 L
Explanation:
When all other variables are held constant, you can use Boyle's Law to find the missing volume:
P₁V₁ = P₂V₂
In this equation, "P₁" and "V₁" represent the initial pressure and volume. "P₂" and "V₂" represent the final pressure and volume. You can find the theoretical volume by plugging the given values into the equation and simplifying.
P₁ = 3.2 atm P₂ = 1.0 atm
V₁ = 2.0 L V₂ = ? L
P₁V₁ = P₂V₂ <----- Boyle's Law
(3.2 atm)(2.0 L) = (1.0 atm)V₂ <----- Insert values
6.4 = (1.0 atm)V₂ <----- Simplify left side
6.4 = V₂ <----- Divide both sides by 1.0
Answer:
ans is (2) 2,4- hexadiene
Answer:
b. colloid
Explanation:
Colloids are solutions that are going to have a solute and a solvent, but the size of the particles are bigger than in a solution that is clear. that is the reason that it looks blurred because the particles are bigger.
In the other hand, these particles of the solute are big, but not so big and heavy as in a suspension, so they are not going to precipitate in the bottom.
The movement of the particles are called Brownian movement, and they are the responsible to avoid to settle down at the bottom of the recipient.