Answer:
Yes. u can because its easy to tell if an item will sink or float usually by the weight or the width
Explanation:
Answer:
0.35 V
Explanation:
(a) Standard reduction potentials
<u> E°/V</u>
Fe²⁺ + 2e- ⇌ Fe; -0.41
Cr³⁺ + 3e⁻ ⇌ Cr; -0.74
(b) Standard cell potential
<u> E°/V</u>
2Cr³⁺ + 6e⁻ ⇌ 2Cr; +0.74
<u>3Fe ⇌ 3Fe²⁺ + 6e-; </u> <u>-0.41
</u>
2Cr³⁺ + 3Fe ⇌ 2Cr + 3Fe²⁺; +0.33
3. Cell potential
2Cr³⁺(0.75 mol·L⁻¹) + 6e⁻ ⇌ 2Cr
<u>3Fe ⇌ 3Fe²⁺(0.25 mol·L⁻¹) + 6e-
</u>
2Cr³⁺(0.75 mol·L⁻¹) + 3Fe ⇌ 2Cr + 3Fe²⁺(0.25 mol·L⁻¹)
The concentrations are not 1 mol·L⁻¹, so we must use the Nernst equation

(a) Data
E° = 0.33 V
R = 8.314 J·K⁻¹mol⁻¹
T = 298 K
z = 6
F = 96 485 C/mol
(b) Calculations:
![Q = \dfrac{\text{[Fe}^{2+}]^{3}}{ \text{[Cr}^{3+}]^{2}} = \dfrac{0.25^{3}}{ 0.75^{2}} =\dfrac{0.0156}{0.562} = 0.0278\\\\E = 0.33 - \left (\dfrac{8.314 \times 298}{6 \times 96485}\right ) \ln(0.0278)\\\\=0.33 -0.00428 \times (-3.58) = 0.33 + 0.0153 = \textbf{0.35 V}\\\text{The cell potential is }\large\boxed{\textbf{0.35 V}}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BFe%7D%5E%7B2%2B%7D%5D%5E%7B3%7D%7D%7B%20%5Ctext%7B%5BCr%7D%5E%7B3%2B%7D%5D%5E%7B2%7D%7D%20%3D%20%5Cdfrac%7B0.25%5E%7B3%7D%7D%7B%200.75%5E%7B2%7D%7D%20%3D%5Cdfrac%7B0.0156%7D%7B0.562%7D%20%3D%200.0278%5C%5C%5C%5CE%20%3D%200.33%20-%20%5Cleft%20%28%5Cdfrac%7B8.314%20%5Ctimes%20298%7D%7B6%20%5Ctimes%2096485%7D%5Cright%20%29%20%5Cln%280.0278%29%5C%5C%5C%5C%3D0.33%20-0.00428%20%5Ctimes%20%28-3.58%29%20%3D%200.33%20%2B%200.0153%20%3D%20%5Ctextbf%7B0.35%20V%7D%5C%5C%5Ctext%7BThe%20cell%20potential%20is%20%7D%5Clarge%5Cboxed%7B%5Ctextbf%7B0.35%20V%7D%7D)
Answer:
Explanation:
x in (-oo:+oo)
2 < (1/2)*x-3 // - (1/2)*x-3
2-((1/2)*x)+3 < 0
(-1/2)*x+2+3 < 0
5-1/2*x < 0 // - 5
-1/2*x < -5 // : -1/2
x > -5/(-1/2)
x > 10
x in (10:+oo)
(10:+oo)
Answer:
<em>Gases tend to deviate from ideal gas law at </em><u><em>high pressures and low temperatures.</em></u>
Explanation:
The main statements from molecular kinetic theory to describe an ideal gas is that 1) the gas particles occupy a neglictible fraction of the total volume of the gas, and 2) there is not force of attraction between gas particles.
HIgh pressure means that the gas particles will be forced closer to each other, making that the mean distance between the particles be realtively more important and their volume less neglictible. This is a violation the first assumption described above.
Since the temperature is directly related to the kinetic energy, and the latter with the movement of the particles (average speed), low temperatures lead to the molecules being less independent of each other, i.e. the forces between the molecules will count more . This fact constitutes a violation of the second principle established in the first paragraph.
In <u>conclusion</u>, <em>high pressures and low temperatures tend to deviate gases from the ideal gas law.</em>
You can read more about ideal and real gases behavior on brainly.com/question/12449772