Answer:
The initial temperature is 499 K
Explanation:
Step 1: Data given
initial volume = 12 cm3 = 12 mL
Final volume = 7 cm3 = 7mL
The final temperature = 18 °C = 291 K
Step 2: Calculate the initial temperature
V1/T1 = V2/T2
⇒with V1 = the initial volume = 0.012 L
⇒with T1 = the initial volume = ?
⇒with V2 = the final volume 0.007 L
⇒with T2 = The final temperature = 291 K
0.012 / T1 = 0.007 / 291
0.012/T1 = 2.4055*10^-5
T1 = 0.012/2.4055*10^-5
T1 = 499 K
The initial temperature is 499 K
Answer:
I can't say that it is definitely write.
HHH
H-C-C-C
Answer:
317 g
Explanation:
Cu + 2HCl --> CuCl2 +H2
1 : 2 1 : 1
1 mole of Cu = 63.5 g
1 mole of H2 = 2g
1 mole Cu produces = 1 mole of H2
63.5 g of Cu produces = 2 g of H2
So
10 g of H2 will be produced from = (63.5/2)*10 = 317 g of Copper
Answer:
First choice: 2
Explanation:
There are 2 phosphorous (P) in the substance.
Ignore the strontium (Sr3) part because you are looking to isolate the P from (PO4)2.
Break the chemical equation apart to get 1 Phosphorous atom, and 4 Oxygen atoms.
Now, multiple 1 by 2 because that are 2 phosphate to get 2 phosphorous atoms.
Answer: , 4 molecules of ammonia, NH3(g) is produced; 2 molecules of ammonia, NH3(g) is produced respectively
Explanation:
The balanced equation is stated below N2(g) + 3H2(g) → 2NH3(g)
1 mole of N2(g) reacts with 3 moles of H2(g) to yield 2 moles of NH3(g)
1) If 2 molecules of N2 react, then the balanced equation will be
2N2(g) + 6H2(g) → 4NH3(g)
Thus, 4 molecules of ammonia, NH3(g) is produced
2) If 3 molecules of H2 react, then the balanced equation will be
N2(g) + 3H2(g) → 2NH3(g)
Thus, 2 molecules of ammonia, NH3(g) is produced