Answer:
Mg²⁺(aq) + SO₃²⁻(aq) + 2 H⁺(aq) + 2 I⁻(aq) ⇄ Mg²⁺(aq) + 2I⁻(aq) + H₂O(l) + SO₂(g)
Explanation:
<em>Give the complete ionic equation for the reaction (if any) that occurs when aqueous solutions of MgSO₃ and HI are mixed.</em>
When MgSO₃ reacts with HI they experience a double displacement reaction, in which the cations and anions of each compound are exchanged, forming H₂SO₃ and MgI₂. At the same time, H₂SO₃ tends to decompose to H₂O and SO₂. The complete molecular equation is:
MgSO₃(aq) + 2 HI(aq) ⇄ MgI₂(aq) + H₂O(l) + SO₂(g)
In the complete ionic equation, species with ionic bonds dissociate into ions.
Mg²⁺(aq) + SO₃²⁻(aq) + 2 H⁺(aq) + 2 I⁻(aq) ⇄ Mg²⁺(aq) + 2I⁻(aq) + H₂O(l) + SO₂(g)
Answer:
A. 4.5 mol Mg(OH)₂
B. 6 mol NaOH
Explanation:
Let's consider the following balanced equation.
Mg(NO₃)₂ + 2 NaOH ⇒ Mg(OH)₂ + 2 NaNO₃
PART A
The molar ratio of NaOH to Mg(OH)₂ is 2:1. The moles of Mg(OH)₂ produced from 9 moles of NaOH are:
9 mol NaOH × 1 mol Mg(OH)₂/2 mol NaOH = 4.5 mol Mg(OH)₂
PART B
The molar ratio of NaOH to NaNO₃ is 2:2. The moles of NaOH needed to produce 6 moles of NaNO₃ are:
6 mol NaNO₃ × 2 mol NaOH/2 mol NaNO₃ = 6 mol NaOH
Answer:
the answer is D i believe. i am not shure but im like 70% sure