Answer:
F = M ω^2 R is the centripetal force on the ball
f = 7 / 10 = .70 / sec revolutions / sec
ω = 2 pi f = 4.40 / sec
ah = F / m = 4.4^2 * 2 = 38.7 m/s^2
horizontal acceleration = 38.7 m/s^2
vertical acceleration = 9.80 m/s^2
a = (38.7^2 + 9.8^2)^1/2 = 39.9 m/s^2 total acceleration
<span>2.56 sec (t=1/0.39)
f=3.9/10</span>
Explanation:
It is given that,
The period of the carrier wave, T = 0.01 s
Let f and
are frequency and the wavelength of the wave respectively. The relationship between the time period and the frequency is given by :


f = 100 Hz
The wavelength of a wave is given by :



So, the frequency and wavelength of the carrier wave are 100 Hz and
respectively. Hence, the correct option is (c).
The constant is the temperature of the air that the plants get.
The independent variable is the thing that YOU control. That's the amount of sunlight each plant gets.
The <em>dependent variable</em> is anything that's caused by changes in the independent variable. That's the growth of the plants.
Answer:

Explanation:
We are given that a parallel- plate capacitor is charged to a potential difference V and then disconnected from the voltage source.
1 m =100 cm
Surface area =S=


We have to find the charge Q on the positive plates of the capacitor.
V=Initial voltage between plates
d=Initial distance between plates
Initial Capacitance of capacitor

Capacitance of capacitor after moving plates


Potential difference between plates after moving








Hence, the charge on positive plate of capacitor=