18 electrons because protons minus the atomic mass so it would be 35-17 which gives you 18.
<span>(a)
Taking the angle of the pitch, 37.5°, and the particle's initial velocity, 18.0 ms^-1, we get:
18.0*cos37.5 = v_x = 14.28 ms^-1, the projectile's horizontal component.
(b)
To much the same end do we derive the vertical component:
18.0*sin37.5 = v_y = 10.96 ms^-1
Which we then divide by acceleration, a_y, to derive the time till maximal displacement,
10.96/9.8 = 1.12 s
Finally, doubling this value should yield the particle's total time with r_y > 0
<span>2.24 s
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span></span>
Answer:
See below
Explanation:
You have to heat the calorimeter to 100 C from 20 C
this will take .20 kg * 390 j /kg-C * 80 C = <u>6240 j</u>
You have to heat the mass of water to boiling point (100 C ) from 20C
this will take
.50 kg * 4182 j/kg-C * 80 = <u>167,280 j </u>
AND you have to add enough heat to boil off .03 kg of water:
.03 kg * (2260000 j/kg-C ) =<u> 67,800 j</u>
<u />
Power = joules / sec = (6240 + 167280 + 67800) / 274.8 =<u> 878 watts </u>
<u />
<u>Your answer may differ just a bit for slightly different or rounded values of specific heat or heat of fusion for water .....</u>
Answer: Given:
Initial velocity= 36km/h=36x5/18=10m/s
Final velocity =54km/h=54x5/18=15m/s
Time =10sec
Acceleration = v-u/ t
=15-10/10=5/10=1/2=0.5 m/s2
Distance =s=?
From second equation of motion:
S=ut +1/2 at^2
=10*10+1/2*0.5*10*10
=100+25
=125m
So distance travelled 125m
Hope it helps you