Answer:
118.3 J
Explanation:
Givens:
m = 1.4 kg
V = 13 m/s
Formula for kinetic energy:
KE = (1/2)*(m)*(v)^2
KE = .5*(1.4 kg)*(13 m/s)^2
KE 118.3 J
J = Joules
Explanation:
B. More mass results in less acceleration.
Answer:
a) the magnitude of r is 184.62
b) the direction is 37.74° south of the negative x-axis
Explanation:
Given the data in the question;
as illustrated in the image blow;
To find the the magnitude of r, we will use the Pythagoras theorem
r² = y² + x²
r = √( y² + x²)
we substitute
r = √((-113)² + (-146)²)
r = √(12769 + 21316 )
r = √(34085 )
r = 184.62
Therefore, the magnitude of r is 184.62
To find its direction, we need to find ∅
from SOH CAH TOA
tan = opposite / adjacent
tan∅ = -113 / -146
tan∅ = 0.77397
∅ = tan⁻¹( 0.77397 )
∅ = 37.74°
Therefore, the direction is 37.74° south of the negative x-axis
Answer:
incomplete question, resistor must be there
Explanation:
Answer:
1500 mph
Explanation:
Take east to be +x and north to be +y.
The x component of the velocity is:
vₓ = 889 cos 0° + 830 cos 59°
vₓ = 1316.5 mph
The y component of the velocity is:
vᵧ = 889 sin 0° + 830 sin 59°
vᵧ = 711.4 mph
The speed is found with Pythagorean theorem:
v² = vₓ² + vᵧ²
v² = (1316.5 mph)² + (711.4 mph)²
v = 1496 mph
Rounded to two significant figures, the jet's speed relative to the ground is 1500 mph.