Answer:
when you get to fall for free
Explanation:
Answer:
0.54m
Explanation:
Step one:
given data
length of seesaw= 3m
mass of man m1= 85kg
weight = mg
W1= 85*10= 850N
mass of daughter m2= 35kg
W2= 35*10= 350N
distance from the center= (1.5-0.2)= 1.3m
Step two:
we know that the sum of clockwise moment equals the anticlockwise moment
let the distance the must sit to balance the system be x
taking moment about the center of the system
350*1.3=850*x
455=850x
divide both sides by 850
x=455/850
x=0.54
Hence the man must sit 0.54m from the right to balance the system
The answer is false your welcome
If the distance between two charges is halved, the electrical force between them increases by a factor 4.
In fact, the magnitude of the electric force between two charges is given by:

where
k is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
We see that the magnitude of the force F is inversely proportional to the square of the distance r. Therefore, if the radius is halved:

the magnitude of the force changes as follows:

so, the force increases by a factor 4.