Answer is: the compound is B₂O₃.
ω(O) = 68.94% ÷ 100%.
ω(O) = 0.6894; percentage of oxygen in the compound.
ω(X) = 31.06% ÷ 100%.
ω(X) = 0.3106; percentage of unknown element in the compound.
If we take 69.7 grams of the compound:
M(compound) = 69.7 g/mol.
n(compound) = 69.7 g ÷ 69.7 g/mol.
n(compound) = 1 mol.
n(O) = (69.7 g · 0.6894) ÷ 16 g/mol.
n(O) = 3 mol.
M(compound) = n(O) · M(O) + n(X) · M(X).
n(X) = 1 mol ⇒ M(X) = 21.7 g/mol; there is no element with this molecular weight.
n(X) = 2 mol ⇒ M(X) = 10.85 g/mol; this element is boron (B).
I think it's just water right..?
Density is given by the equation D=m/V, were D is density, m is mass in grams, and V is volume in cubic centimeters.
In this problem, we have density and we have mass so we can plug into the equation and solve for V.
38.6=270.2/V
<em>*Multiply both sides by V*</em>
38.6V=270.2
<em>*Divide both sides by 38.6*</em>
V=7
The volume of the gold nugget is 7cm3.
Hope this helps!!
Answer:
The number of outer shell electrons determines the group number of the element. The number of occupied principle quantum shells (energy levels) determines the period of the element. The proton number determines the element itself and its position.
Explanation:
The purpose of the experiment is to see what the different areas effect the plant.