Answer:
"13.48 Kwhr" is the right solution.
Explanation:
The given values are:
Average rate of heat energy,
= 0.063 W/m²
Diameter,
= 8m
Efficiency of conversion,
= 50%
Now,
The area of hotspot will be:
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
Total heat generation rate will be:
⇒ 


hence,
The electricity generation capacity will be:
⇒ 
On substituting the values, we get
⇒ 
⇒ 
On converting into Kwhr, we get
⇒ 
Tangential acceleration of a point on the rim of the flywheel during this spin-up process is 0.2548 m/s².
Tangential acceleration is defined as the rate of change of tangential velocity of the matter in the circular path.
Given,
Radius of flywheel (r) = 1.96 cm = 0.0196m
Angular acceleration (α)= 13.0 rad/s²
The tangential acceleration formula is at=rα
where, α is the angular acceleration, and r is the radius of the circle.
using the formula; at=rα = (13.0 rad/s²) (0.0196m) = 0.2548 m/s².
The tangential acceleration is 0.2548 m/s².
Learn more about the Tangential acceleration with the help of the following link:
brainly.com/question/15743294
#SPJ4
Recall the wave equation,

where c is the speed of the wave (m/s), f is the frequency of the wave (Hz) and λ is the wavelength of the wave (m).

so
Answer:cross-sectional area, and thus surface area, increases the amount of air resistance an object experiences
Explanation:
Answer:
The beat frequency is 30 Hz
Explanation:
Given;
velocity of the two sound waves, v = 343 m/s
wavelength of the first wave, λ₁ = 5.72 m
wavelength of the second wave, λ₂ = 11.44 m
The frequency of the first wave is calculated as follows;
F₁ = v/λ₁
F₁ = 343 / 5.72
F₁ = 59.97 HZ
The frequency of the second wave is calculated as follows;
F₂ = v/λ₂
F₂ = 343 / 11.44
F₂ = 29.98 Hz
The beat frequency is calculated as;
Fb = F₁ - F₂
Fb = 59.97 HZ - 29.98 Hz
Fb = 30 Hz