Answer:

Explanation:
Percent yield is a ratio of the actual yield to the theoretical yield. It is found using this formula:

The actual yield is 12 liters, because that was actually produced in the lab.
The theoretical yield is 20 liters, because that was the expected yield.



For this reaction, the percent yield is 60%.
According to Raoult's low:
We will use this formula: Vp(Solution) = mole fraction of solvent * Vp(solvent)
∴ mole fraction of solvent = Vp(Solu) / Vp (Solv)
when we have Vp(solu) = 25.7 torr & Vp(solv) = 31.8 torr
So by substitution:
∴ mole fraction of solvent = 25.7 / 31.8 =0.808
when we assume the moles of solute NaCl = X
and according to the mole fraction of solvent formula:
mole fraction of solvent = moles of solvent / (moles of solvent + moles of solute)
by substitute:
∴ 0.808 = 0.115 / (0.115 + X)
So X (the no.of moles of NaCl) = 0.027 m
Hydrogen ions
mark me brainlist
Answer:
a. BH₃
Explanation:
According to the octet rules, atoms reach stability when are surrounded by eight electrons in their valence shell when they combine to form a chemical compound.
From the options, the only compound in which the central atom does not meet the octet rules is BH₃. The central atom is boron (B), which has 3 electrons in its valence shell. When B is combined with hydrogen (H), 3 electrons from the 3 atoms of H are added. The total amount of electrons is 6, fewer than 8 electrons needed to meet the rule.
hope this helps
Answer:

Explanation:
We must do the conversions
mass of C₆H₁₂O₆ ⟶ moles of C₆H₁₂O₆ ⟶ moles of O₂
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 180.16
C₆H₁₂O₆ + 6O₂ ⟶ 6CO₂ + 6H₂O
m/g: 18.1
(a) Moles of C₆H₁₂O₆

b) Moles of O₂