Answer:
lava is coming from the crust
Explanation:
volcano's explode with lava because the crust pushes it out
The rate constant of first order reaction at 32. 3 °C is 0.343 /s must be less the 0. 543 at 25°C.
First-order reactions are very commonplace. we have already encountered examples of first-order reactions: the hydrolysis of aspirin and the reaction of t-butyl bromide with water to present t-butanol. every other reaction that famous obvious first-order kinetics is the hydrolysis of the anticancer drug cisplatin.
The value of ok suggests the equilibrium ratio of products to reactants. In an equilibrium combination both reactants and merchandise co-exist. big ok > 1 merchandise are k = 1 neither reactants nor products are desired.
Rate constant K₁ = 0. 543 /s
T₁ = 25°C
Activation energy Eₐ = 75. 9 k j/mol.
T₂ = 32. 3 °C.
K₂ =?
formula;
log K₂/K₁= Eₐ /2.303 R [1/T₁ - 1/T₂]
putting the value in the equation
K₂ = 0.343 /s
Hence, The rate constant of first order reaction at 32. 3 °C is 0.343 /s
The specific rate steady is the proportionality consistent touching on the fee of the reaction to the concentrations of reactants. The fee law and the specific charge consistent for any chemical reaction should be determined experimentally. The cost of the charge steady is temperature established.
Learn more about activation energy here:- brainly.com/question/26724488
#SPJ4
If the substance mixes with water it's polar. If it doesn't it ms non polar.
Answer: The increase in solubility or the rate of dissolving process of a gaseous solute in a liquid solvent is due to following:
- Increasing agitation
- Increasing temperature
- Increasing solute's partial pressure over the solvent
- Increasing solute's surface area
Explanation:
When agitation is increased then there will occur an increase in kinetic energy of the molecules of a substance. As a result, more number of collisions will take place due to which more amount of solute will dissolve into the solvent.
Similarly, increasing the temperature will further increase the kinetic energy of molecules. Hence, this will lead to more solubility of gaseous solute into the liquid solvent.
As solubility of a gas is directly proportional to the pressure of the gas above surface of the solution. So, an increase in solute's partial pressure over solvent will also lead to an increase in solubility of gaseous solute into liquid solvent.
When surface area of solute is increased then there will be more solute particles available for reaction. Hence, more collisions will take place. As a result, rate of reaction is more due to which there will be an increase in solubility.
Thus, we can conclude that the increase in solubility or the rate of dissolving process of a gaseous solute in a liquid solvent is due to following:
- Increasing agitation
- Increasing temperature
- Increasing solute's partial pressure over the solvent
- Increasing solute's surface area