Answer:
No one is correct. The correct expression is:
Keq = [H₂]² . [O₂]² / [H₂O]²
Explanation:
To build the Keq expression in a chemical equilibrium you must consider the molar concentrations of reactants / products, and they must be elevated to the stoichiometric coefficient.
The balance reaction is:
<u>2</u> H₂O (g) ⇄ <u>2</u> H₂ (g) + O₂ (g)
Keq = [H₂]² . [O₂] / [H₂O]²
In opposite side: <u>2</u> H₂ (g) + O₂ (g) ⇄ <u>2</u> H₂O (g)
Keq = [H₂O]² / [H₂]² . [O₂]
Container which is heated
Answer:
C. increase to 7.
Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, the molar relationship is 1 to 1, therefore, the moles are:

Thus, since the entire hydrogen ions are neutralized, the pH C. increase to 7.
Best regards.
Reactives
-> Products
CuO
and water are products.
I
found this reaction which has CuO and water as products: decomposition of
Cu(OH)2.
Cu(OH)2
-> CuO + H2O
Stoichiometry calculus involve the mole
proportions you can see in the reaction: When 1 mole of Cu(OH)2 reacts, 1 mole of
CuO and 1 mole of H2O are formed.
Considering
the molar masses:
Cu(OH)2
= 83.56 g/mol
CuO
= 79.545 g/mol
H2O
= 18.015 g/mol
Then:
When 83.56 g of Cu(OH)2 react, 79.545 g of CuO and 18.015 g H2O are formed.
You
should use that numbers in the rule of three:
79.545
g CuO __________18.015 g water
3.327
g CuO__________ x =3.327*18.015 /79.545 g water
x= 0.7535 g water
Can’t have anything in Detroit