As there is no postive or negative assigned so
Initial velocity= -2.8759
Displacement= 0.5at^2+ut
= 0.5(-1.77)(3.33)^2+(-2.8759)(3.33)=-19.4m
Answer:
54.17volts
Explanation:
Induced emf in a coil placed in a magnetic field can be expressed as E = N¶/t where
N is the number of turns = 150turns
¶ is the magnetic flux = magnetic field strength (B) × area(A)
¶ = BA
B = 0.65T
A = 1.0m²
t is the time =1.8s
Substituting this value in the formula
E = NBA/t
E = 150×0.65×1.0/1.8
E = 54.17Volts
The induced emf in the coil is 54.17Volts
When precipitation hits the ground and hydrosphere
The answer is letter C. <span>A train travels from the bottom of a hill to the top of a hill, its moves slower by the time it reaches the top is an example of negative acceleration.
In physics, acceleration can be described as an objects change of velocity. When an object gains velocity, it is positive acceleration, and negative acceleration for the opposite.
</span>
Thank you for posting your question. I hope you found what you were after. Please feel free to ask me more.
<span> </span>
The work done by a constant force in a rectilinear motion is given by:

where F is the magnitude of the force, d is the distance and θ is the angle between the force and the displacement vector.
In this case we have two forces then we need to add the work done by each of them; for the first force we have a magnitude of 17 N, a displacement of 12 m and and angle of 0° (since both the displacement and the force point right); for the second force we have a magnitude of 36 N, a displacement of 12 m and an angle of 30°. Plugging these values we have that the total work is:

Therefore, the total work done is 578.123 J and the answer is option E