C is the answer to the question
Answer:
See below
Explanation:
Vertical position is given by
df = do + vo t - 1/2 a t^2 df = final position = 0 (on the ground)
do =original position = 2 m
vo = original <u>VERTICAL</u> velocity = 0
a = acceleration of gravity = 9.81 m/s^2
THIS BECOMES
0 = 2 + 0 * t - 1/2 ( 9.81)t^2
to show t =<u> .639 seconds to hit the ground </u>
During this .639 seconds it flies horizontally at 10 m/s for a distance of
10 m/s * .639 s =<u> 6.39 m </u>
Answer:

Explanation:
As we know by radioactivity law

so here we will have


now we will have


now we also know that



Answer:
715 N
Explanation:
Since the system is moving at a constant velocity, the net force must be 0. The tension on the road is equal and opposite direction with the kinetic friction force created by the road and the stuntman.
Let g = 9.8 m/s2
Gravity and equalized normal force is:
N = P = mg = 107*9.8 = 1048.6 N
Kinetic friction force and equalized tension force on the rope is
