Answer:
I searched it and the best answer I could find is A.
Explanation:
Heres an image that might help you.
By mutation over time of RNA chains
The question is incomplete as it does not have the options which are:
- Yes, because people's eyes move during sleep, and this stimulates the rods and cones.
- No, because rods and cones only convert light energy into electrical signals.
- No, because rods and cones never produce electrical signals.
- Yes, because the rods and cones are reproducing images that are then sent to the brain.
Answer:
No, because rods and cones only convert light energy into electrical signals.
Explanation:
The rod and cone cells are the photoreceptor cells present on the retina of the eye which receives the physical stimulus in the form of light and then converts the light energy into the electrical energy which is sent to the brain.
When we dream, our remains closed and no light is able to enter the eye as a result of which the rods and cones do not send the signals to the brain.
Thus, the selected options are correct.
Answer:
They probably use aerobic respiration.
Explanation:
A travel distance of 11.500 kilometers in 9 days covered by flying surely requires a lot of energy.
- If cells are fermenting, the ATP (energy) they generate only comes from glycolysis, which produces 2 ATP molecules.
- If they are using aerobic respiration, glucose is completely oxidized to CO₂ through glycolysis and the Citric Acid Cycle, and the electrons enter the electron transport chain to finally reduce oxygen into water. In the complete process, up to 36 ATP molecules are produced.
In sum, aerobic respiration is much more efficient to generate energy than fermentation, so it's probably the main metabolism of the flight muscles in bar-tailed godwits.
It portrays the neuromuscular junction of a skeletal muscle.
The breakdown items are consumed by the pre-synaptic neuron by endocytosis and used to re-combine more neurotransmitter, utilizing vitality from the mitochondria. The Cytoplasm in the Synaptic Knob has a high extent of specific organelles. These incorporate smooth endoplasmic reticulum, mitochondria, and vesicles.