Answer:
Electron-pair geometry: tetrahedral
Molecular geometry: trigonal pyramidal
Hybridization: sp³
sp³ - 4 p
Explanation:
There is some info missing. I think this is the original question.
<em>For NBr₃, What are its electron-pair and molecular geometries? What is the hybridization of the nitrogen atom? What orbitals on N and Br overlap to form bonds between these elements?</em>
<em>The N-Br bonds are formed by the overlap of the ___ hybrid orbitals on nitrogen with ___ orbitals on Br.</em>
<em />
Nitrogen is a central atom surrounded by 4 electron domains. According to VESPR, the corresponding electron-pair geometry is tetrahedral.
Of these 4 electron domains, 3 represent covalent bonds with Br and 1 lone pair. According to VESPR, the corresponding molecular geometry is trigonal pyramidal.
In the nitrogen atom, 1 s orbital and 3 p orbitals hybridize to form 4 sp³ orbitals for each of the electron domains.
The N-Br bonds are formed by the overlap of the sp³ hybrid orbitals on nitrogen with 4p orbitals on Br.
This example is an controversial matter because melting an candle is considered as both physical change and chemical change because no new substances were made by melting an candle. The final answer is C.
Answer:
3.9
Explanation:
Let's consider the following reaction at equilibrium.
CO(g) + Cl₂(g) ↔ COCl₂(g)
We can find the pressures at equilibrium using an ICE chart.
CO(g) + Cl₂(g) ↔ COCl₂(g)
I 0.96 1.15 0
C -x -x +x
E 0.96-x 1.15-x x
The sum of the partial pressures is equal to the total pressure.
pCO + pCl₂ + pCOCl₂ = 1.47
(0.96-x) + (1.15-x) + x = 1.47
2.11 - x = 1.47
x = 0.64
The pressures at equilibrium are:
pCO = 0.96 - x = 0.32 atm
pCl₂ = 1.15 - x = 0.51 atm
pCOCl₂ = x = 0.64 atm
The pressure equilibrium constant (Kp) is:
Kp = pCOCl₂ / pCO × pCl₂
Kp = 0.64 / 0.32 × 0.51
Kp = 3.9
Answer:
0.4694 moles of CrCl₃
Explanation:
The balanced equation is:
Cr₂O₃(s) + 3CCl₄(l) → 2CrCl₃(s) + 3COCl₂(aq)
The stoichiometry of the equation is how much moles of the substances must react to form the products, and it's represented by the coefficients of the balanced equation. So, 1 mol of Cr₂O₃ must react with 3 moles of CCl₄ to form 2 moles of CrCl₃ and 3 moles of COCl₂.
The stoichiometry calculus must be on a moles basis. The compounds of interest are Cr₂O₃ and CrCl₃. The molar masses of the elements are:
MCr = 52 g/mol
MCl = 35.5 g/mol
MO = 16 g/mol
So, the molar mass of the Cr₂O₃ is = 2x52 + 3x35.5 = 210.5 g/mol.
The number of moles is the mass divided by the molar mass, so:
n = 49.4/210.5 = 0.2347 mol of Cr₂O₃.
For the stoichiometry:
1 mol of Cr₂O₃ ------------------- 2 moles of CrCl₃
0.2347 mol of Cr₂O₃----------- x
By a simple direct three rule:
x = 0.4694 moles of CrCl₃
Answer:
The common way electrons are found in shells or orbitals that surround the nucleus of an atom.I hope it helped
Explanation:
pls mark brainliest