Answer:
34.02 g.
Explanation:
Hello!
In this case, since the gas behaves ideally, we can use the following equation to compute the moles at the specified conditions:

Now, since the molar mass of a compound is computed by dividing the mass over mass, we obtain the following molar mass:

So probably, the gas may be H₂S.
Best regards!
<u>Answer:</u> The volume of barium chlorate is 195.65 mL
<u>Explanation:</u>
To calculate the volume of solution, we use the equation used to calculate the molarity of solution:

Given mass of barium chlorate = 25.0 g
Molar mass of barium chlorate = 304.23 g/mol
Molarity of solution = 0.420 mol/L
Volume of solution = ?
Putting values in above equation, we get:

Hence, the volume of barium chlorate is 195.65 mL
Answer:
2Cu2^+ + 2I^- ----> 2Cu^+ + I2
Explanation:
The reaction performed in the experiment is;
2 Cu(NO3)2 + 4 KI → 2 CuI (s) + 4 KNO3 + I2
The iodide ions reduces Cu^2+ to Cu^+ which is insoluble in water hence the precipitate. This is so because iodine is a good oxidizing agent seeing that it requires one electron to fill its outermost shell. Potassium on the other hand is a good reducing agent since it easily looses its one electron.
The oxidation - reduction equation is as follows;
2Cu2^+ + 2e ----> 2Cu^+ reduction half equation
2I^- ----> I2 + 2e. Oxidation half equation
Balanced redox reaction equation;
2Cu2^+ + 2I^- ----> 2Cu^+ + I2
3.62x10^24/ 6.02x10^23= 6.013 moles to 3dp