Answer: I found this online. Hope it helps you.
Explanation:
This pressure is transmitted throughout the liquid and makes it more difficult for bubbles to form and for boiling to take place. If the pressure is reduced, the liquid requires less energy to change to a gaseous phase, and boiling occurs at a lower temperature.
Answer:
150ml
Explanation:
For this question,
NaOH completely dissociates. It is a strong base
HCl also completely dissociates. It is a strong acid
So we have this equation
m1v1 = m2v2 ----> equation 1
M2 = 2m
V1= ??
M2 = 6m
V2 = 50m
When we input these into equation 1, we have:
2m x v1 = 6m x 50ml
V1 = 6m x 50ml/2
V1 = 300/2
V1 = 150ml
Therefore NaOH that is required to neutralize the solution of hydrochloric acid is 150ml.
Thank you
B. Biomass
(I guess so cause other ones are already being used)
Answer : The fraction of carbonic acid present in the blood is 5.95%
Explanation :
The mixture consists of carbonic acid ( H₂CO₃) and bicarbonate ion ( HCO₃⁻). This represents a mixture of weak acid and its conjugate which is a buffer.
The pH of a buffer is calculated using Henderson equation which is given below.
![pH = pKa + log \frac{[Base]}{[Acid]}](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2B%20log%20%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D)
We have been given,
pH = 7.5
pKa of carbonic acid = 6.3
Let us plug in the values in Henderson equation to find the ratio Base/Acid.
![7.5 = 6.3 + log \frac{[base]}{[acid]}](https://tex.z-dn.net/?f=7.5%20%3D%206.3%20%2B%20log%20%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
![1.2 = log \frac{[base]}{[acid]}](https://tex.z-dn.net/?f=1.2%20%3D%20log%20%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
![\frac{[Base]}{[Acid]} = 10^{1.2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D%20%3D%2010%5E%7B1.2%7D)
![\frac{[Base]}{[Acid]} = 15.8](https://tex.z-dn.net/?f=%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D%20%3D%2015.8)
![[Base] = 15.8 \times [Acid]](https://tex.z-dn.net/?f=%5BBase%5D%20%3D%2015.8%20%5Ctimes%20%5BAcid%5D)
The total of mole fraction of acid and base is 1. Therefore we have,
![[Acid] + [Base] = 1](https://tex.z-dn.net/?f=%5BAcid%5D%20%2B%20%5BBase%5D%20%3D%201)
But Base = 15.8 x [Acid]. Let us plug in this value in above equation.
![[Acid] + 15.8 \times [Acid] = 1](https://tex.z-dn.net/?f=%5BAcid%5D%20%2B%2015.8%20%5Ctimes%20%5BAcid%5D%20%3D%201)
![16.8 [Acid] = 1](https://tex.z-dn.net/?f=16.8%20%5BAcid%5D%20%3D%201)
![[Acid] = \frac{1}{16.8}](https://tex.z-dn.net/?f=%5BAcid%5D%20%3D%20%5Cfrac%7B1%7D%7B16.8%7D)
![[Acid] = 0.0595](https://tex.z-dn.net/?f=%5BAcid%5D%20%3D%200.0595)
[Acid] = 0.0595 x 100 = 5.95 %
The fraction of carbonic acid present in the blood is 5.95%