Nitrogen (N2) and hydrogen (H2) gases react to form ammonia, which requires -99.4 J/K of standard entropy (ΔS°).
What is standard entropy?
The difference between the total standard entropies of the reaction mixture and the summation of the standard entropies of the outputs is the standard entropy change. Each entropy in the balanced equation needs to be compounded by its coefficient, as shown by the letter "n."
Calculation:
Balancing the given reaction following-
1/2 N₂(g) + 3/2 H₂ (g)→ NH₃ (g)
ΔS° = [1 mol x S° (NH₃)g] - [1/2 mol x S° (N₂)g] - [3/2 mol x S°(H₂)g]
Here S° = standard entropy of the system
Insert into the aforementioned equation all the typical entropy values found in the literature:
ΔS° = [1 mol x 192.45 J/mol.K] - [1/2 mol x 191.61 J/mol.K] - [3/2 mol x 130.684 J/mol.K]
⇒ΔS° = - 99.4 J/K
Therefore, the standard entropy, ΔS° is -99.4 J/K.
Learn more about standard entropy here:
brainly.com/question/14356933
#SPJ4
Answer:
The correct answer is skeleton equation.
Explanation:
In chemistry, the skeletal formula of a compound is an abbreviated representation of its molecular structure. Skeleton formulas are used because they clearly show complicated structures, they are fast and simple to draw.
All atoms that are not carbon or hydrogen are represented by their chemical symbol. The relative amounts of reagents and products are not indicated.
Have a nice day!
Protostars are less dense than other stars.
Explanation:
Protostars are very young ‘stars’ made from hydrogen clouds that are beginning to coalesce and collapse under their weight. The hydrogen has not even begun fusing. Therefore, they are mainly made of hydrogen which is the lightest element in the universe.
Stars, however, have begun fusing hydrogen to other heavier elements like helium, carbon, oxygen, and iron. The elements are much heavier than hydrogen making other stars much denser than protostars.
Learn More:
For more on protostars vs stars check out;
brainly.com/question/3719157
brainly.com/question/2229892
#LearnWithBrainly
Answer:
Grinding or breaking an Alka-Seltzer tablet increases the number of particles and increases the surface area. Material which was within the tablet is exposed, allowing for more collisions between reactant particles and resulting in an increased rate of reaction.