D.
Always use the right tool to get accurate measurements
Answer:
the exposed core of a dead star, supported by electron degeneracy pressure.
Explanation:
A white dwarf is a low luminosity exposed core of a dead star having mass comparable to the sun but volume comparable to the earth . So its density is very high . These stars have lost the capacity to generate energy through the process of fusion . Due to high gravitational energy , it goes on shrinking but ultimately balanced by electron degeneracy pressure. It is not a main sequence star as it has lost the power of fusion .
Answer:
741 J/kg°C
Explanation:
Given that
Initial temperature of glass, T(g) = 72° C
Specific heat capacity of glass, c(g) = 840 J/kg°C
Temperature of liquid, T(l)= 40° C
Final temperature, T(2) = 57° C
Specific heat capacity of the liquid, c(l) = ?
Using the relation
Heat gained by the liquid = Heat lost by the glass
m(l).C(l).ΔT(l) = m(g).C(g).ΔT(g)
Since their mass are the same, then
C(l)ΔT(l) = C(g)ΔT(g)
C(l) = C(g)ΔT(g) / ΔT(l)
C(l) = 840 * (72 - 57) / (57 - 40)
C(l) = 12600 / 17
C(l) = 741 J/kg°C
First think which has less mass in the solar system. The sun is the largest object in the solar system, so the answer is C. the sun. Hope I helped! :P