Answer:
i dont know
Explanation:
blah blah blah your welcome
Answer:
Vr = 20 [km/h]
Explanation:
In order to solve this problem, we have to add the relative velocities. We must remember that velocity is a vector, therefore it has magnitude and direction. We will take the sea as the reference measurement level.
Let's take the direction of the ship as positive. Therefore the boy moves in the opposite direction (Negative) to the reference level (the sea).
![V_{r}=30-10\\V_{r}=20 [km/h]](https://tex.z-dn.net/?f=V_%7Br%7D%3D30-10%5C%5CV_%7Br%7D%3D20%20%5Bkm%2Fh%5D)
Answer:
Explained below
Explanation:
A) Newton's first law of motion states that an object will remain at rest or continue in its current state of motion except it is acted upon by another force.
Now using this law, when you jump off the ground, the earth will move a tiny bit and accelerate due to the force applied by the jumping.
B) Newton's 2nd law states that the acceleration of a system is directly proportional to the net external force acting on that system, is in the same direction with it and also inversely proportional to the mass.
In this case, when one jumps, an external force is exerted on the earth and we are told it is directly proportional to the acceleration of the system which in this case it's the earth, then it means that there is some motion by the earth even though you didn't see it move.
C) Newton's third law of motion states that to every action, there is an equal and opposite reaction.
In this case the motion of the jumper will lead to an equal and opposite reaction of the earth.
The JWST is postioned about 1.5 million kilometers from the earth on the side facing away from the sun
Answer:
After 9 seconds the object reaches ground.
Step-by-step explanation:
We equation of motion given as h = -16t²+128t+144,
We need to find in how many seconds will the object hit the ground,
That is we need to find time when h = 0
0 = -16t²+128t+144
16t²-128t-144= 0

Negative time is not possible, hence after 9 seconds the object reaches ground.