1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leni [432]
4 years ago
9

Which are the three types of mutations?

Physics
1 answer:
WITCHER [35]4 years ago
7 0
Replication, Multiplication, and Substitution.
You might be interested in
What, roughly, is the percent uncertainty in the volume of a spherical beach ball whose radius is 5.66 0.09 m?
iren2701 [21]

Answer:

  • 4.77 %

Explanation:

We know that the volume V for a sphere of radius r is

V(r) = \frac{4}{3} \ \pi \ r^3

If we got an uncertainty \Delta r the formula for the uncertainty of V is:

\Delta V(r) = \sqrt{  (\frac{dV}{dr} \Delta r)^2  }

We can calculate this uncertainty, first we obtain the derivative:

\frac{dV}{dr}  = 3 * \frac{4}{3} \ \pi \ r^2

\frac{dV}{dr}  = 4 \ \pi \ r^2

And using it in the formula:

\Delta V(r) = \sqrt{  (4 \ \pi \ r^2\Delta r)^2  }

\Delta V(r) = \sqrt{  4^2 \ \pi^2 \ r^4 \Delta r^2  }

\Delta V(r) =  4 \  \pi \ r^2 \Delta r

The relative uncertainty is:

\frac{\Delta V(r)}{V(r)}

\frac{ 4 \  \pi \ r^2 \Delta r  }{ \frac{4}{3} \ \pi \ r^3}

\frac{ 3  \Delta r  }{  r}

Using the values for the problem:

\frac{ 3 * 0.09 m  }{  5.66 m} = 0.0477

This is, a percent uncertainty of 4.77 %

4 0
3 years ago
An uniform electric field of magnitude E = 100 N/C is oriented along the positive y-axis. What is the magnitude of the flux of t
Ede4ka [16]

Answer:

The magnitude of the flux of electric field through a square of surface area is zero.

Explanation:

E=100 NC^{-1}\\\\A=2 m^2\\\\Electic\,\,flux\,\,flux\,\,is\,\,given\,\,as:\\\\\phi_E=E.A\,cos\,\theta

It is given that square box is parallel to yz-plane which has normal vector perpendicular to plane in x-direction. Angle between normal vector of area and electric field is 90°. Substituting in (1)

\phi_E=E.A\,cos\,(90^o)\\\\\phi_E=0

4 0
4 years ago
A charge q1 of -5.00 x 10^-9 C and a charge q2 of -2.00x 10^-9 C are separated by a distance of 40.0 cm. Find the equilibrium po
Blababa [14]

The magnitude of charge on a proton and electron is the same, 1.602 x 10-19 C. Protons are +, and electrons -.

5 0
3 years ago
Consider three force vectors Fi with magni- tude 53 N and direction 116º, F2 with mag- nitude 57 N and direction 217°, and F3 wi
Flauer [41]

Answer:

a. Fnet =37.67N

b. The direction = 133.4 from the x axis counter clockwise.

c. Option 2

Explanation:

Given that F1 is 53N at 116°, then it will be at a direction of 116-90=26° in the second quadrant.

Given that F2 is 57N at 116°, then it will be at a direction of 217-180=37° in the third quadrant..

Given that F1 is 71N at 20°, then it is in the first quadrant.

a. Fnet= F1+F2+F3

Fnet= -F1sin26i+F2cos26j-F2cos37i-F2sin37j+F3cos20i+F3sin20j

Fnet= 53sin26i+53cos26j-57cos37i-57sin37j+71cos20i+71sin20j

Resolving the vectors into x and y components.

Fnet= -2.04i+37.62j

Magnitude of the vector

Fnet= √((-2.04)^2+(37.62)^2)

Fnet= 37.67N

Fnet is approximately 38N.

b. Direction of the Fnet.

Angle=arctan(y/x)

Angle=arctan(-37.61/2.04)

Angle= -43.37°

The angle is in the negative x axis and positive y axis.

Then the direction becomes 180-43.37

Therefore, the direction of the net force is 133.37°.

c. The instantaneous velocity of a body is always in the direction of the net force at that instant. Option 2 is correct.

Fnet=ma

Fnet= mv/t

So the velocity is in the direction of the Fnet.

3 0
3 years ago
A 6.0-kilogram block, sliding to the east across a horizontal, frictionless surface with a momentum of 30.0 kilogram · meters pe
Lina20 [59]

The final speed of the block after the collision with the obstacle is \boxed{3.33\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}}.

Further Explanation:

Given:

The mass of the block is 6.0\,{\text{kg}}.

The initial momentum of the block is 30\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/ {\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}.

The impulse imparted by the obstacle is 10\,{\text{N}} \cdot {\text{s}}.

Concept:

The block is sliding towards east and the impulse imparted by the obstacle is towards the obstacle is towards west on the block. It means that the impulse exerted by the obstacle will reduce the momentum of the block.

According to the impulse momentum theorem, the rate of change of momentum of the body is equal to the impulse imparted to the body.

The expression for the impulse momentum theorem is.

{p_f} - p{ & _i} = I               …… (1)                                    

Substitute 30\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/{\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}} for {p_i} and - 10\,{\text{N}} \cdot {\text{s}} for I  in equation (1).

 \begin{aligned}{p_f} &= - 10\,{\text{N}} \cdot {\text{s}} + 30\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/{\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}} \\&= 20\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/{\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}}\\\end{aligned}

The final momentum of the block can be expressed as:

{p_f} = m{v_f}                   …… (2)                                  

Substitute 20\text{kg}\;\text{m/s} for {p_f} and 6.0\,{\text{kg}} for m in equation (2).

 \begin{aligned}20 &= 6 \times {v_f} \\ {v_f}&= \frac{{20}}{6}\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}}\\&= 3.33\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}} \\ \end{aligned}

Thus, the final speed of the block after the collision with the obstacle is \boxed{3.33\;\text{m/s}}.

Learn More:

  1. Choose the 200 kg refrigerator. Set the applied force to 400 n (to the right) brainly.com/question/4033012
  2. With your hand parallel to the floor and your palm upright, you lower a 3-kg book downward brainly.com/question/9719731
  3. Which of the following is an example of a nonpoint source of freshwater pollution brainly.com/question/1482712

Answer Details:

Grade: High School

Chapter: Impulse-momentum theorem

Subject: Physics

Keywords:  Impulse, imparted, obstacle, speed, momentum, the obstacle, impulse-momentum theorem, frictionless surface, speed of block after collision.

5 0
3 years ago
Read 2 more answers
Other questions:
  • What is the acceleration of a car that moves at a steady velocity of 100km/h for 100s?
    6·1 answer
  • What location on earth experiences the most change the number of daylight hours?
    8·1 answer
  • From Doppler shifts of the spectral lines in the light coming from the east and west edges of the Sun, astronomers find that the
    13·1 answer
  • Monday Homework Problem 10.6 A simple generator is constructed by rotating a flat coil in a uniform magnetic field. Suppose we r
    6·1 answer
  • What is the definition of zenith, altitude, horizon, circompolar stars, astrolabe, and doppler effect in astronomy?
    13·1 answer
  • If two brown-eyed people have a blue-eyed child, we can deduce which of the following?
    15·2 answers
  • Which of the following does not accurately depict a scientific theory?
    10·1 answer
  • 1.) What things signal the coming of spring?
    12·1 answer
  • Do all objects have inertia <br><br> a) true<br> b) false
    10·1 answer
  • How do unbalanced forces acting on an object affect its motion when the object is at rest? What if it is moving?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!