Atoms diameter are on the order of 60 to 600pm (picometers). This is around 6*10^-11.
Answer:
<em>Thus, the object is accelerating to the left</em>
Explanation:
<u>The Net Force</u>
The net force is the result of adding all the forces as vectors acting on a body.

Each vector can be expressed in its rectangular components Fx and Fy, and the sum is the sum of the rectangular components separately.
Second Newton's law gives the relation between the net force and the acceleration of the body:

We can see the acceleration is a vector with the same direction as the net force.
The diagram shows two vertical forces and two horizontal forces.
The vertical forces are acting in opposite directions and with the same magnitude, thus they cancel out, leaving zero net force in the y-axis.
The horizontal forces are opposite and with different magnitudes. Since the force acting to the left (F3) has a greater magnitude than the force acting to the right (F4), there is a net force directed to the left with a magnitude of 60 N - 20 N = 40 N
Thus, the object is accelerating to the left
Answer:
A or B(the answers)
Explanation:
they seem like the most right
Answer:
a)F=3 x 10⁻⁷ N
b)x=2.405 m
Explanation:
Given that
m₁=295 kg
m₂=595 kg
d= 4.1 m
a)
m₃=63 kg
r=d/2 = 2.05 m
The force between the mass m₁ and m₃

by putting the values


F₁₃=2.94 x 10⁻⁷ N
The force between the mass m₂ and m₃
by putting the values


F₂₃=5.94 x 10⁻⁷ N
The net force F
F= F₂₃- F₁₃
F=5.94 x 10⁻⁷ N-2.94 x 10⁻⁷ N
F=3 x 10⁻⁷ N
b)
Lest take at distance x from mass m₂ net force is zero.


Form above two equation



x²=2.01(4.1-x)²
x=1.42 (4.1-x)
x=5.82 - 1.42x
x=2.405 m
To calculate the horizontal distance traveled by the shot if it leaves the athlete's hand at a height of 2.20 above the ground we can get the root of the quad equation for time are t=-0.24 or t =1.84 taking the t = 1.84, so the equation will be:
x = 15.6cos(30) * 1.86, x = 24.79m