Answer:
The induced current in the resistor is I = BLv/R
Explanation:
The induced emf ε in the long bar of length, L in a magnetic field of strength, B moving with a velocity, v is given by
ε = BLv.
Now, the current I in the resistor is given by
I = ε/R where ε = induced emf in circuit and R = resistance of resistor.
So, the current I = ε/R.
substituting the value of ε the induced emf, we have
I = ε/R
I = BLv/R
So, the induced current through the resistor is given by I = BLv/R
Explanation:
Given that,
Mass of ball, m = 0.425 kg
Initial speed of the ball, u = 12 m/s
Initial speed of a person, u' = 0
Mass of a person, m' = 68 kg
(a) Let V is the combined speed of the person and the ball. Using conservation of momentum as :

(b) If the ball hits the person and bounces off his chest, so afterwards it is moving horizontally at 9.00 m/s in the opposite direction,. Let v' is the speed of the person after the collision. So,

v = -9 m/s

Hence, this is the required solution.
Answer:
<h2>98 J</h2>
Explanation:
The potential energy of a body can be found by using the formula
PE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 9.8 m/s²
From the question we have
PE = 5 × 9.8 × 2
We have the final answer as
<h3>98 J</h3>
Hope this helps you
Answer:
u go to vanguard? in 6th grade
Atom* the particles are (Electrons)