Answer:
The answer to your question is below
Explanation:
To explain what happens with the ball we must remember the Law of Conservation of Energy.
This law states that the energy can be neither created nor destroyed only converted from one form of energy to another.
Then,
At the top of the hill, the potential energy is maximum and the kinetic energy equals to zero.
When the ball starts to roll down the potential energy will be lower and the kinetic energy will have a low value.
At the middle of the hill, both energies have the same values.
At the end of the hill, the potential energy will be equal to zero and the kinetic energy will be maximum.
Speed (velocity)=distance/time
V1=98km/4hr=24.5km/hr
V2=61km/3hr=20.3km/hr
Average speed (velocity)=total velocity/ number
Average speed (velocity)=44.8km/hr/2=22.4
So the average speed is 22.4km/hr
Answer: 14.16
Explanation:
Given
d = 38cm
r = d/2 = 38/2 = 19cm = 0.19m
K.E = 510J
m = 10kg
I = 1/2mr²
I = 1/2*10*0.19²
I = 0.18kgm²
When it has 510J of Kinetic Energy then,
510J = 1/2Iω²
ω² = 1020/I
ω² = 1020/0.18
ω² = 5666.67
ω = √5666.67 = 75.28 rad/s
Velocity is the block, v = ωr
V = 75.28 * 0.19
V = 14.30m/s
The "effective mass" M of the system is
M = (14.0 + ½*10.0) kg = 19.0 kg
The motive force would be
F = ma
F = 14 * 9.8
F = 137.2N
so that the acceleration would be
a = F/m
a = 137.2/19
a = 7.22m/s²
Finally, using equation of motion.
V² = u² + 2as
14.3² = 0 + 2*7.22*s
204.49 = 14.44s
s = 204.49/14.44
s = 14.16m
Explanation:
Let the speeds of father and son are
. The kinetic energies of father and son are
. The mass of father and son are 
(a) According to given conditions, 
And 
Kinetic energy of father is given by :
.............(1)
Kinetic energy of son is given by :
...........(2)
From equation (1), (2) we get :
..............(3)
If the speed of father is speed up by 1.5 m/s, so the ratio of kinetic energies is given by :


Using equation (3) in above equation, we get :

(b) Put the value of
in equation (3) as :

Hence, this is the required solution.
Answer:
In a house there is a lot less space so there is no where for the sound to travel, but if you are outside there is a lot more space so therefore, the sound can travel anywhere.
Explanation: