Answer:
49 N
Explanation:
In order to move the box at constant speed, the acceleration of the box must be zero (a=0): this means, according to Newton's second law,
F = ma
that the net force acting on the box, F, must be zero as well.
Here there are two forces acting on the box in the horizontal direction while it is moving:
- The force of push applied by the guy, F
- The frictional force, 
For an object moving on a flat surface, the frictional force is given by

where
is the coefficient of friction
m is the mass of the box
g is the acceleration of gravity
So the equation of the forces becomes

And substituting:

We find the force that must be applied by the guy:

I believe that would be D.
Cardiovascular disease generally refers to conditions that involve narrowed or blocked blood vessels that can lead to a heart attack, chest pain, or stroke. Which it has nothing to do with being infectious.
Answer:
2.42hours
Explanation:
To calculate the time taken to boil the cup of water, we will use the formula
Q = It where
Q is the total energy required to boil the water = 100KJ = 100,000Joules
I is the current = 11.5A
t is the time taken to boil the water
t = Q/I
t = 100,000/11.5
t = 8695.65seconds
t = 2.42hours
Answer:
A balanced equation
Explanation:
when atoms of various elements or compounds react, they do this in mole ratio. It is a law to always balance the number of elements of each element on the reactant side to the corresponding elements on the product side of the equation. This is done by the introduction of coefficients.
Answer:
The power dissipated in either one of the parallel resistors is 2 V
Explanation:
Given;
two parallel resistors, R₁ and R₂ = 2 ohms
The total resistance of the Two resistors of 2 ohms connected in parallel is;

when connected to another resistor of 1 ohm in series, the total resistance becomes;
Rt = R₁ + R₂
Rt = 1 + 1 = 2 ohms
Current in the circuit, I = voltage / total resistance
= 2 /2 = 1 A
the overall circuit has been resolved to series connection, and current flow in series circuit is constant.
Power = I²R
Thus, power dissipated in either one of the parallel 2 ohms resistors is;
Power = I²R = (1)² x 2 = 2 V