Answer:
This is a single replacement reaction because I replaces Br.
A very disgusting type of lemonade
c. online college and career planning resource you can access once you take the PSAT.
Explanation:
MyRoad is an online platform where college and career planning resources can be accessed when the PSAT has been taken.
It provides an online mentor-ship and guidance for approaching the more robust college life.
The platform allows diverse students to access useful information about their intended colleges.
It also helps in determining career choices and a host of other resources.
Answer:
A chemical reaction in which an uncombined element replaces an element that is part of a compound is called a simple substitution reaction or simple displacement reaction.
Explanation:
A simple substitution reaction or simple displacement reaction, called single-displacement reaction, is a reaction in which an element of a compound is substituted by another element involved in the reaction. The starting materials are always pure elements and an aqueous compound. And a new pure aqueous compound and a different pure element are generated as products. The general form of a simple substitution reaction is:
AB + C → A +BC
where C and A are pure elements; C replaces A within compound AB to form a new co, placed CB and elementary A.
So, in a Single replacement reaction an uncombined element replaces an element.
<u><em>A chemical reaction in which an uncombined element replaces an element that is part of a compound is called a simple substitution reaction or simple displacement reaction.</em></u>
Answer: The pressure in atmospheres is 0.674 in the container if the temperature remains constant.
Explanation:
Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
(At constant temperature and number of moles)
where,
= initial pressure of gas = 205 kPa
= final pressure of gas = ?
= initial volume of gas = 4.0 L
= final volume of gas = 12000 ml = 12 L (1L=1000ml)
(1kPa=0.0098atm)
Therefore, the pressure in atmospheres is 0.674 in the container if the temperature remains constant.